How Do Transformers Learn Variable Binding in Symbolic Programs?

Yiwei Wu, Atticus Geiger, Raphaël Millière

Yiwei Wu

DLCT | August 15, 2025

1

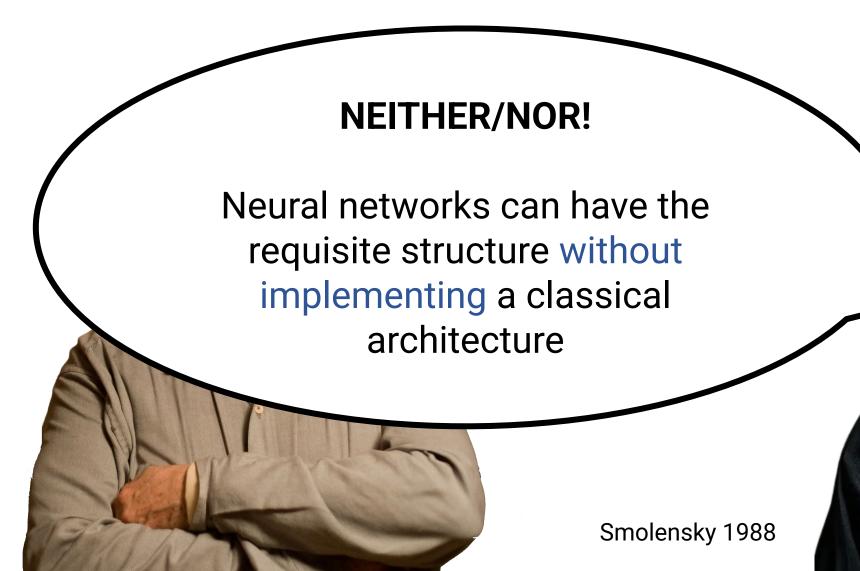
Variable binding as a core computation

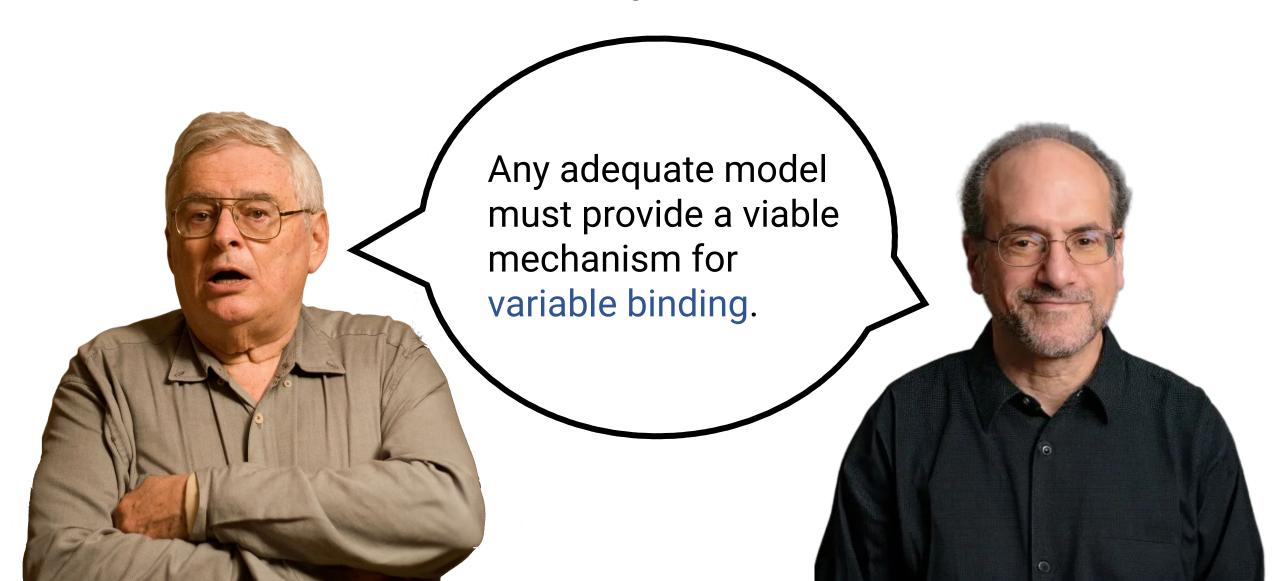
EITHER...

Connectionist models lack the kind of structured representations and structure-sensitive processes that can account for the systematicity of cognition

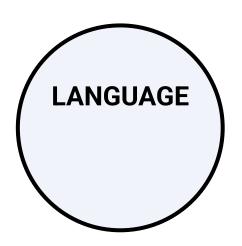
...OR

They do incorporate these but merely implement a classical symbol-processing architecture





The process of associating a variable (placeholder, role) with a specific value (instance, filler) within a structured representation, such that the value can be dynamically updated and retrieved for use in downstream computations.



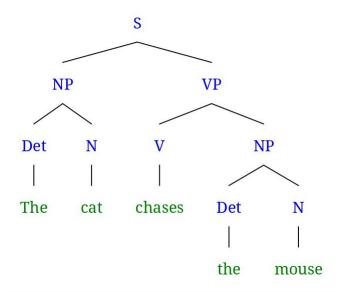
Anaphora John saw his dog.

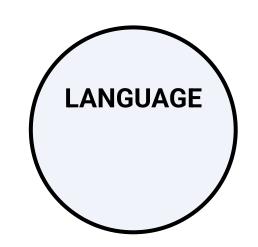
Quantification Every student, read a book that they, liked.

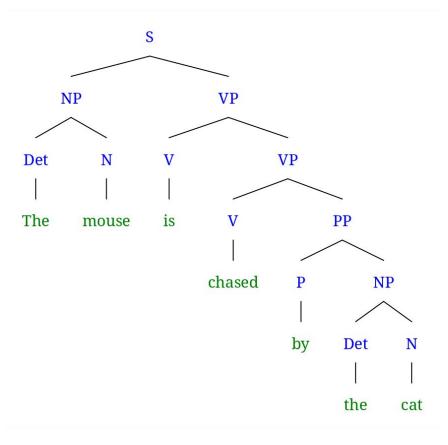
Wh-Movement Who did Mary see ____?

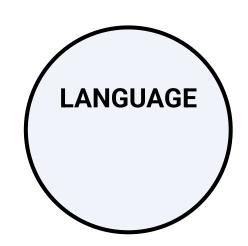
The cat chases the mouse.

The mouse is chased by the cat.









The cat chases the mouse.

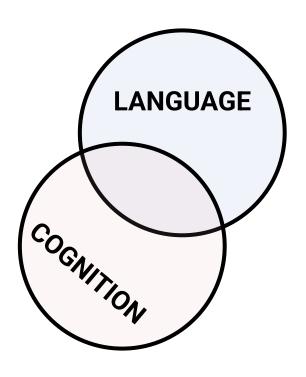
The mouse is chased by the cat.

Logical form

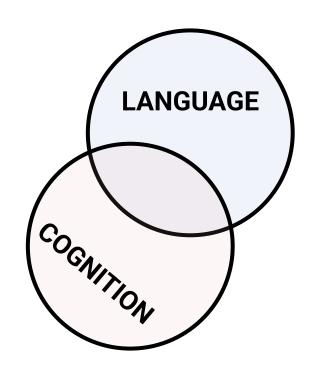
$$\exists x \exists y [CAT(x) \land MOUSE(y) \land CHASE(x,y)]$$

Thematic roles

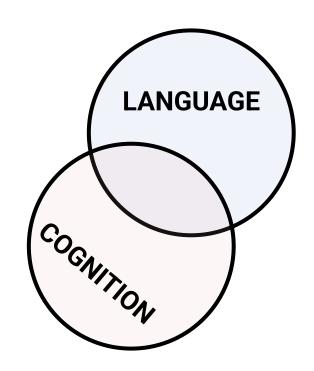
AGENT(CAT), THEME(MOUSE)



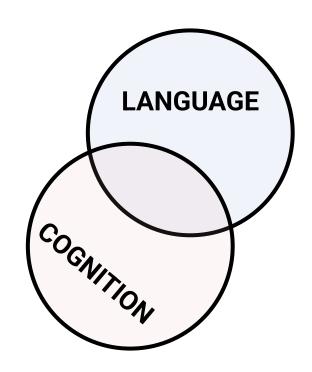
Systematicity & compositional generalization



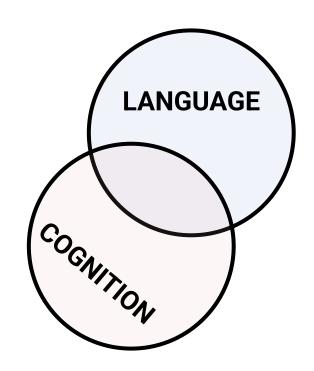
- Systematicity & compositional generalization
- Rule-based learning



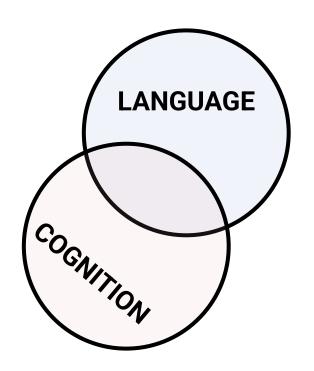
- Systematicity & compositional generalization
- Rule-based learning
- Abstract role-based reasoning

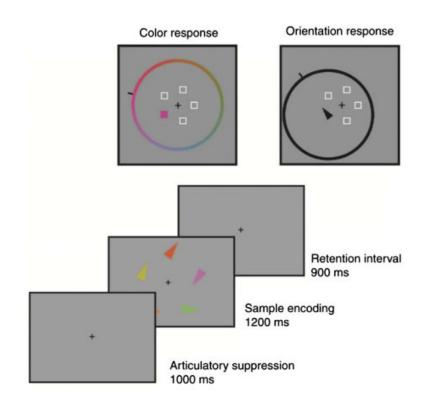


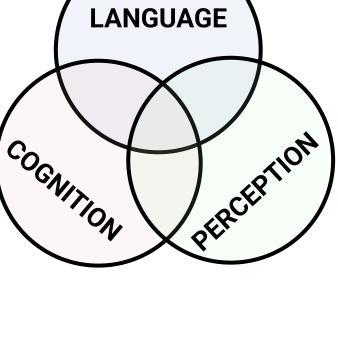
- Systematicity & compositional generalization
- Rule-based learning
- Abstract role-based reasoning
- Analogical reasoning



- Systematicity & compositional generalization
- Rule-based learning
- Abstract role-based reasoning
- Analogical reasoning
- Event understanding

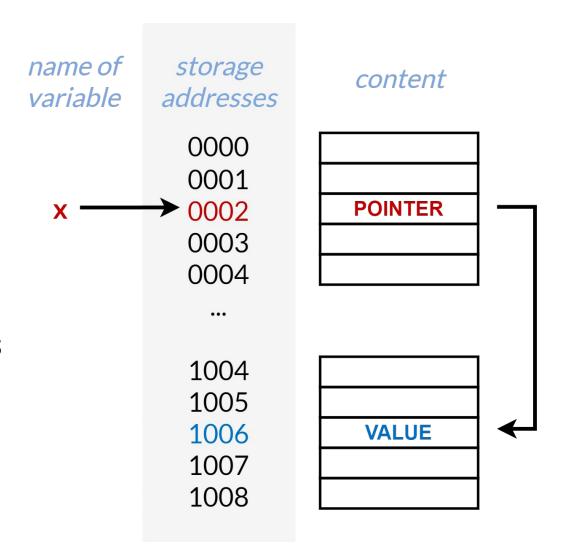






Indirect addressing

- Variable binding is classically implemented through indirect addressing
- The first address serves as a symbol for the variable, pointing to the location containing the address of the value
- The actual value is specified by the bit pattern at the second address, which is indirectly accessed



Modern DNNs

"Variable binding [is] a classic example of LoT-like symbolic computation"

"It remains open that DNNs might mimic the performance of biological perception and cognition across a wide variety of domains and tasks by *implementing* core features of LoTs."

Two questions

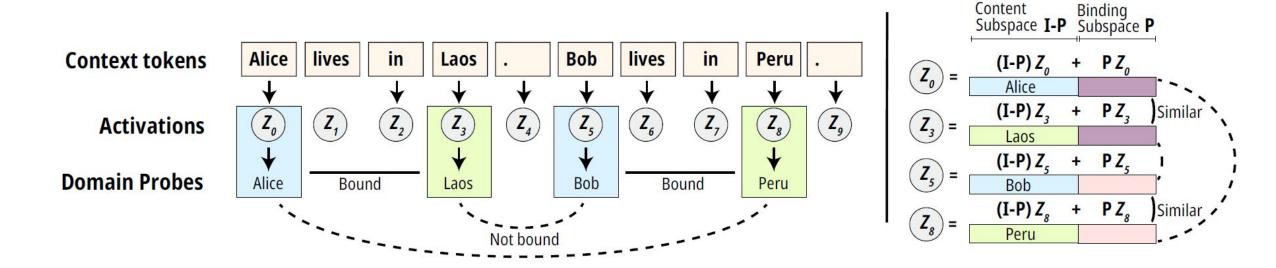
Can Transformers behave consistently with the hypothesis that they have a mechanism for variable binding?

If so, how does this mechanism work, and how does it emerge?

2

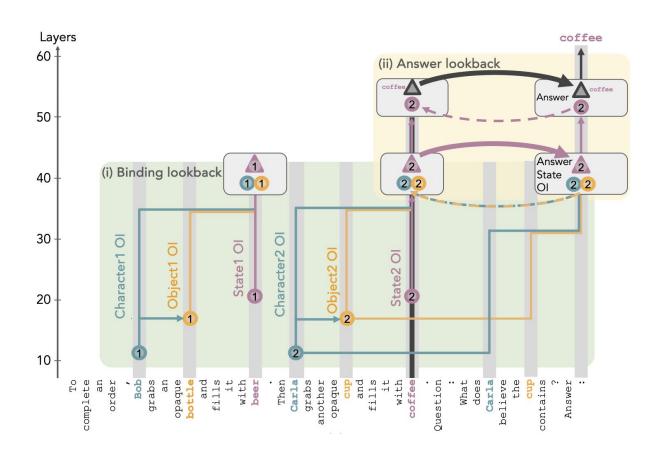
A developmental & mechanistic perspective

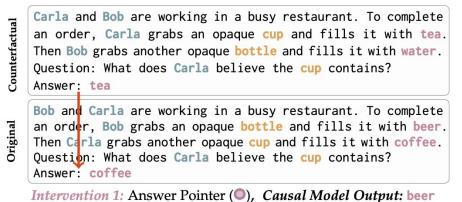
Related work: entity binding in pretrained LLMs



Feng & Steinhardt 2024; Feng et al. 2024; Dai et al. 2024

Related work: entity binding in pretrained LLMs





Intervention 2: Answer Payload (A), Causal Model Output: tea

Atticus Geiger

Raphaël Millière

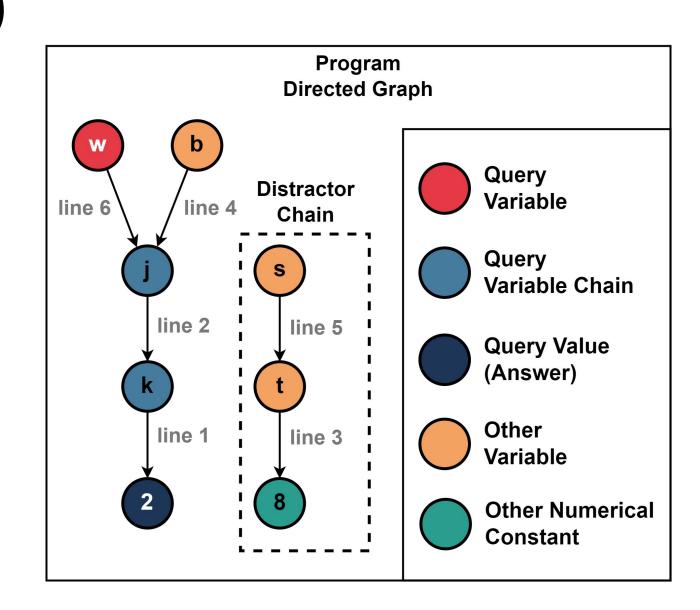
The experiment

- Setup: we train a small Transformer-based language model on a synthetic variable binding task with causal language modeling objective
- Behavioral component: we assess how performance on a held-out test set evolves over the course of training
- Interpretability component: we use probing and interventions to understand what strategy the model learns and how it learns it

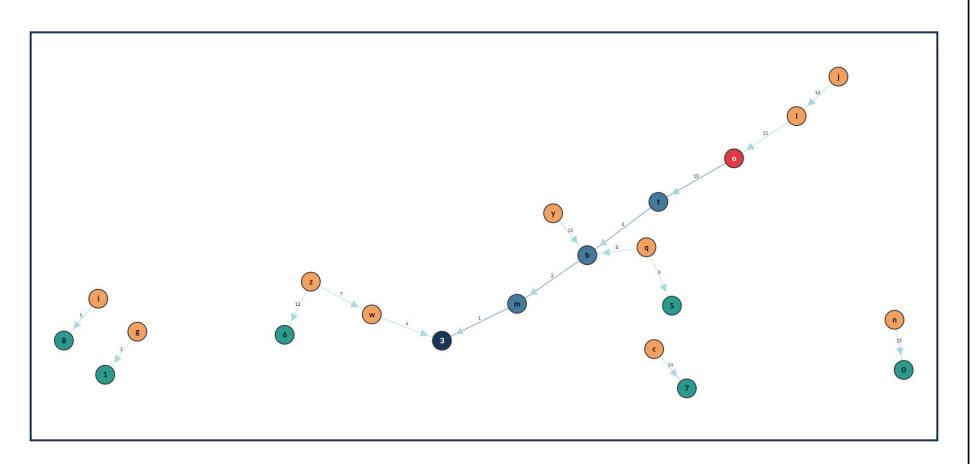
The task (abbr.)

Example 3-Hop Program

referential depth 1 referential depth 2 distractor chain referential depth 3 query #W:



The task (for real)



Actual 4-Hop Program

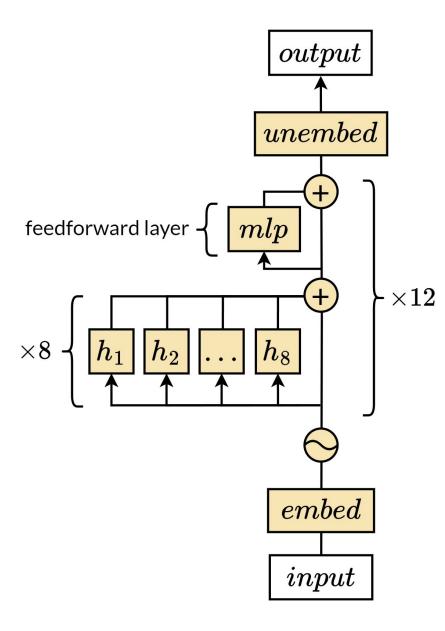
```
referential depth 1 m=3
referential depth 2 b=m
               g=1
               w=3
               i=8
referential depth 3 t=b
               z=w
               q = b
               q=5
referential depth 4 0=t
               1=o
               z=6
               y=b
               c=7
               n=0
               j=1
         query #o:
```

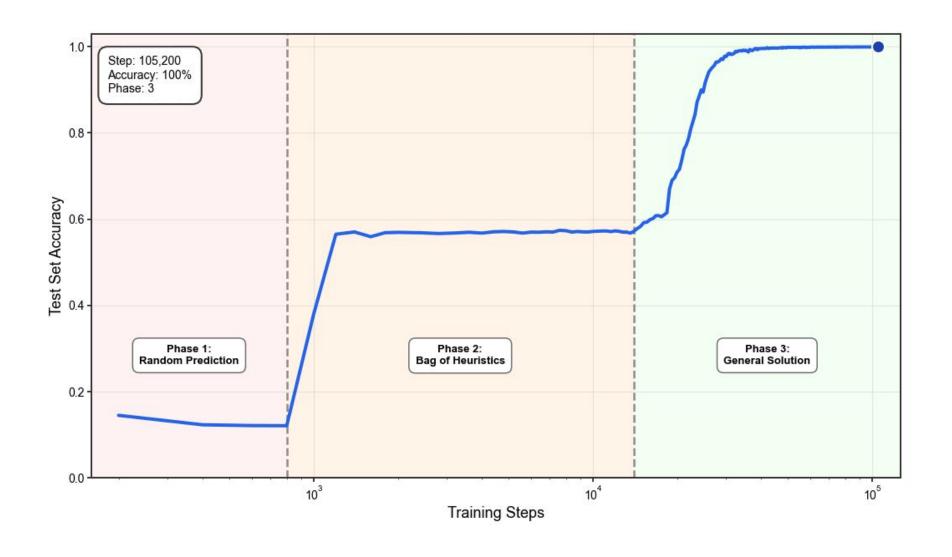
Sampling

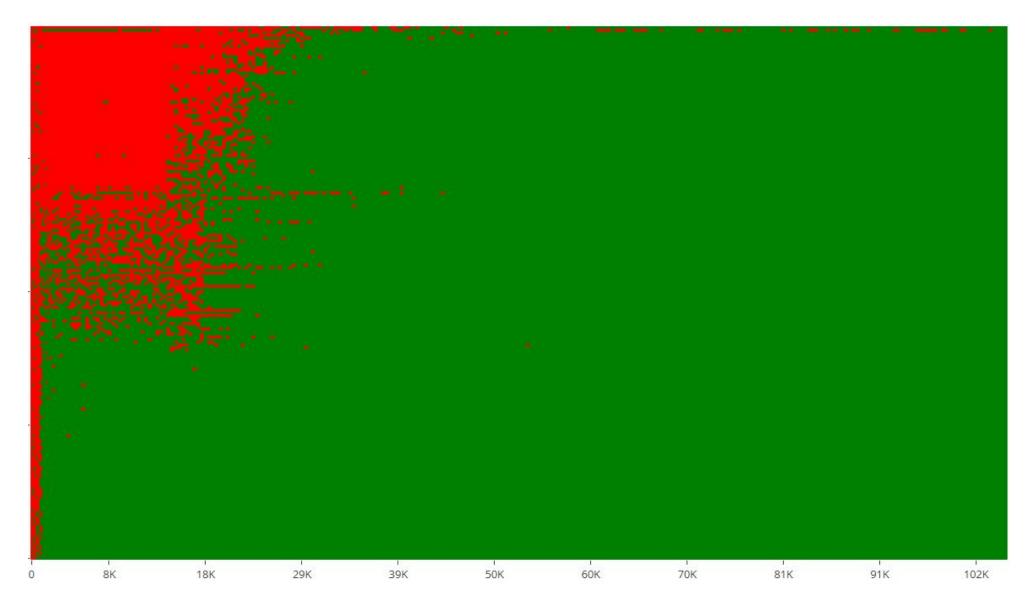
- 500,000 programs
- Data split: 90% train / 0.2% val / 9.8% test
- 26 variable names (a-z)
- 10 constants (0-9)
- We favor longer chains
- We use rejection sampling to balance the data across the 4 possible referential depths for the query variable chain

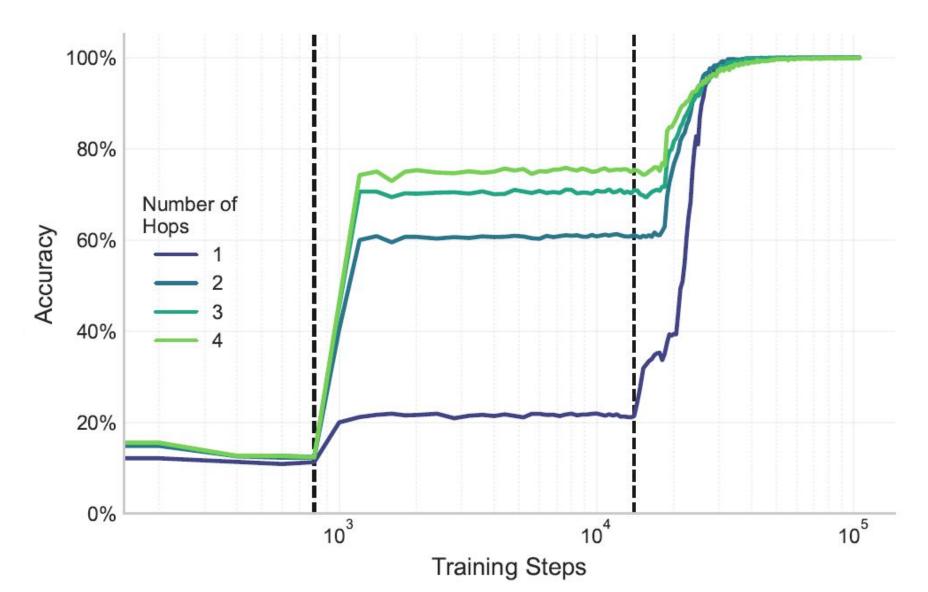
Model

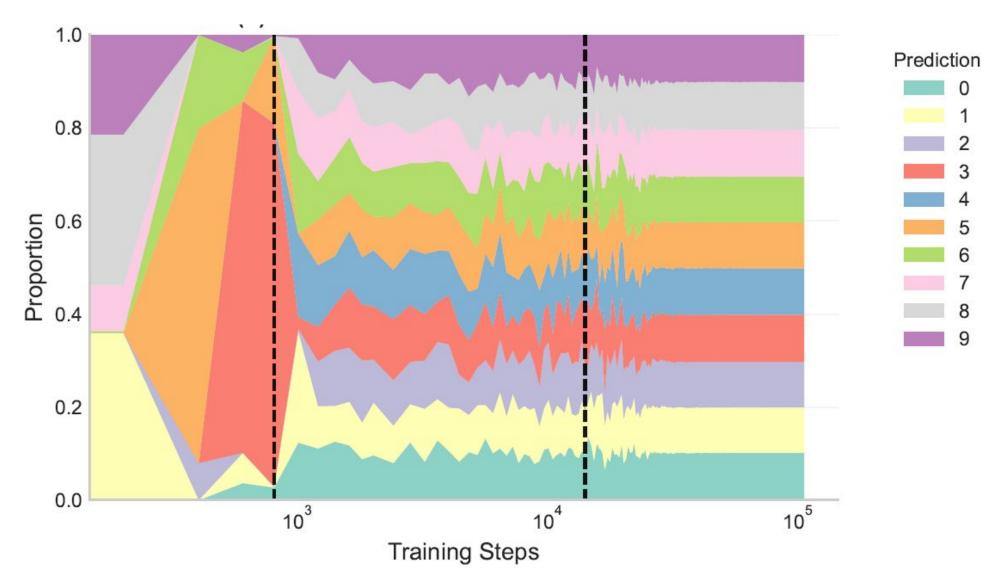
- Transformer architecture (GPT-2-like)
- 37.8M parameters
- 12 layers (embedding dim 512)
- 8 attention heads per layer (dim 64)
- Rotary positional embedding (RoPE)
- GELU activations
- Dropout rate: 0.1

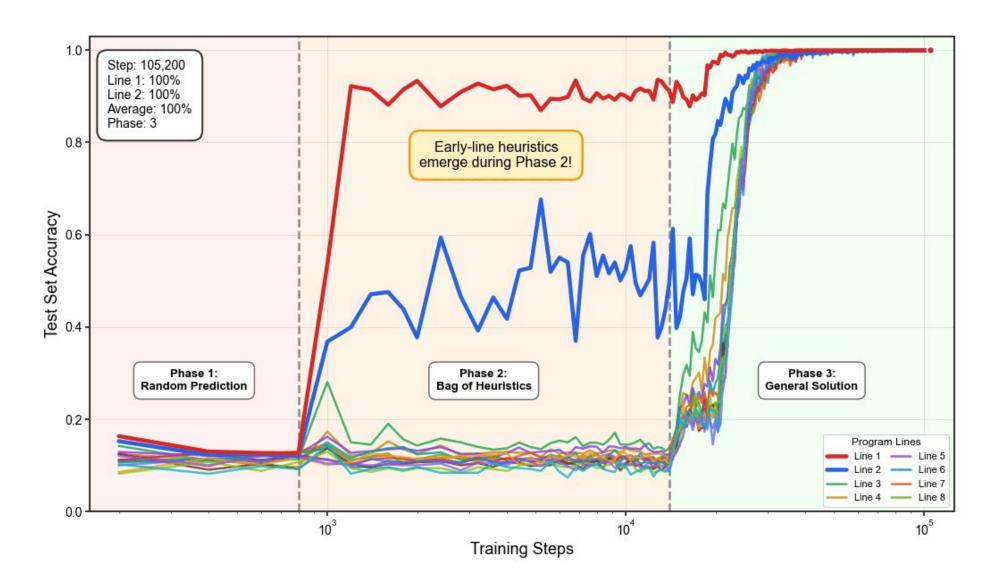




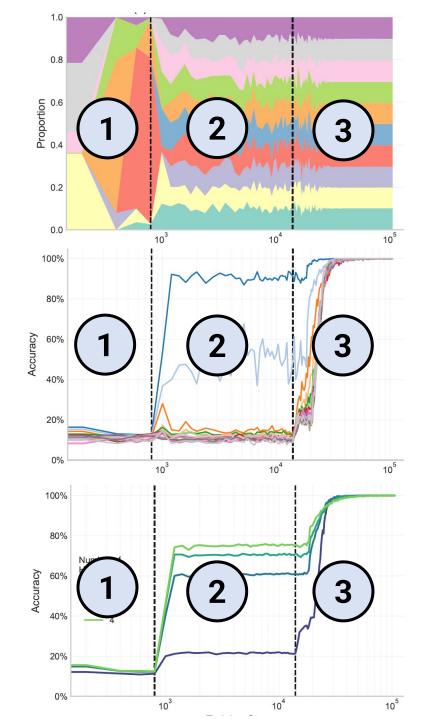




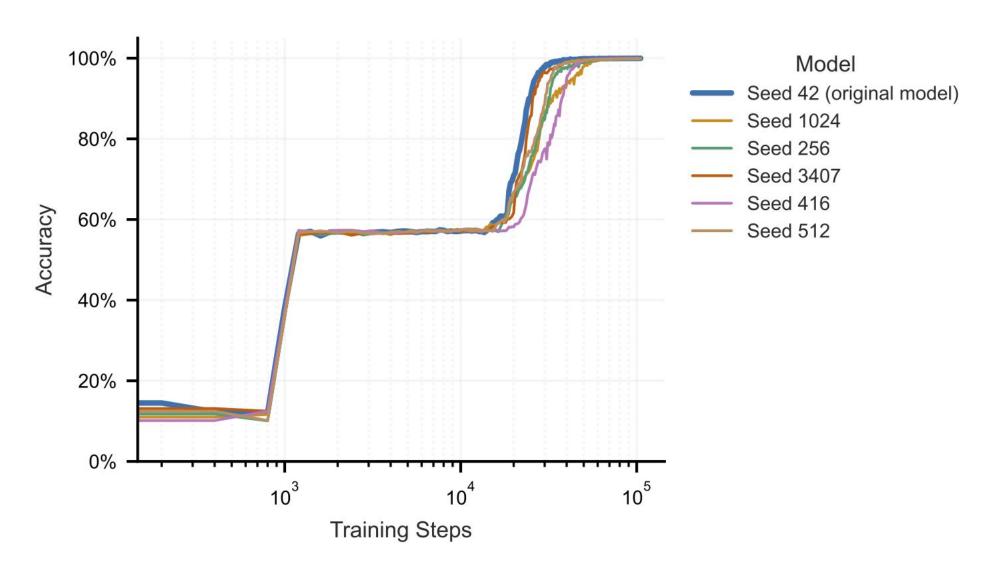




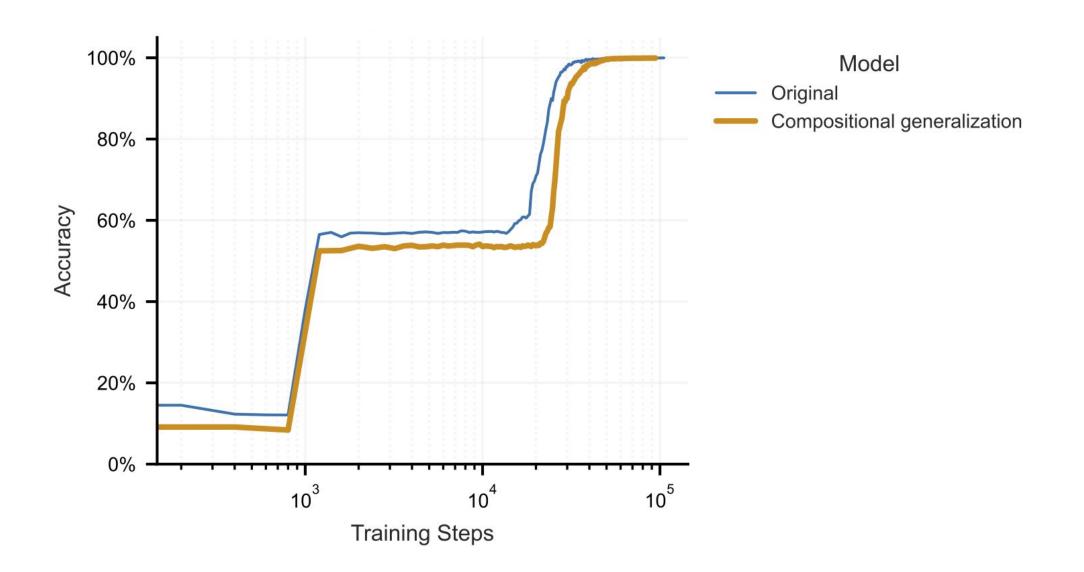
- Phase 1: predicting random constants
- Phase 2: bag of early-line heuristics
- Phase 3: systematic solution



Multiple Random Seeds



Generalization to Unseen Combinations



Probing experiment

Layer	State Acc (%)	Var. Acc (Excl. Nil) (%)
1	7.71	21.28
2	8.42	25.36
3	8.78	28.56
4	8.87	28.52
5	8.73	29.80
6	8.90	30.87
7	8.88	30.72
8	8.83	30.03
9	8.85	29.61
10	8.73	28.90
11	8.72	28.66
12	8.77	28.51

Interchange interventions

- Sample a program (original input)
- Create a counterfactual input with a different root value for query chain
- Cache model activations on counterfactual input
- Swap activations of specific model components on original input with cached activations
- Track effect on logits and behavior

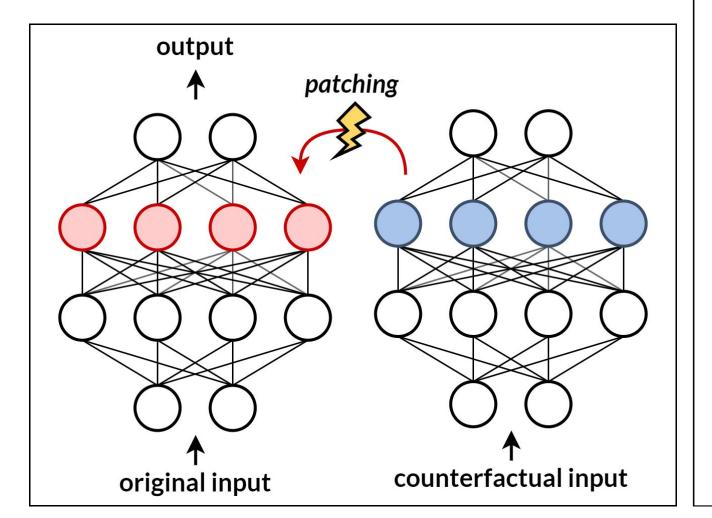
ORIGINAL INPUT

```
referential depth 1 m=3
referential depth 2 b=m
                q=1
                w=3
                i=8
                t=b
referential depth 3
                Z = W
                q = b
                q=5
referential depth 4
                1=0
                z=6
                y=b
                c=7
                n=0
                j=1
          query #0:
```

COUNTERFACTUAL INPUT

```
referential depth 1 M=8
referential depth 2 b=m
                q=1
                w=3
                i=8
referential depth 3
                Z = W
                 q = b
                q=5
referential depth 4
                 1=0
                z=6
                y=b
                c = 7
                n=0
                 i=1
          query #0:
```

Interchange interventions

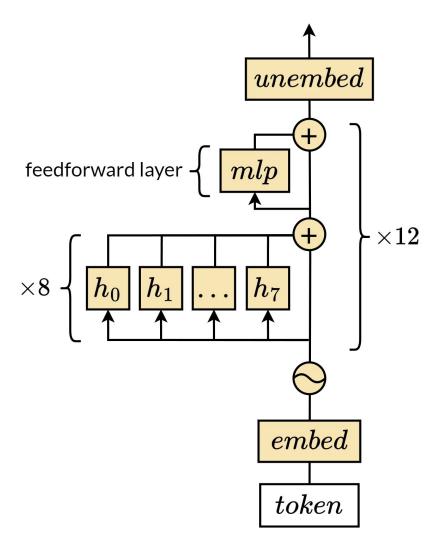


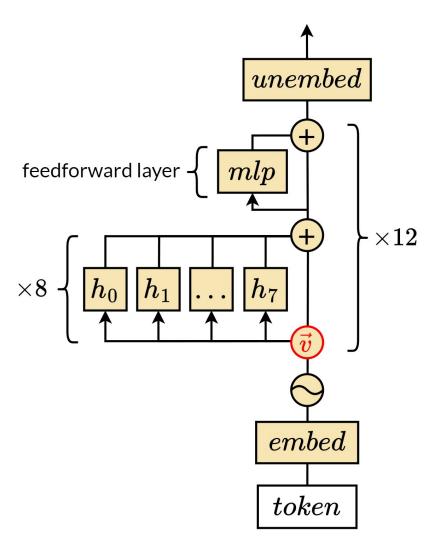
ORIGINAL INPUT

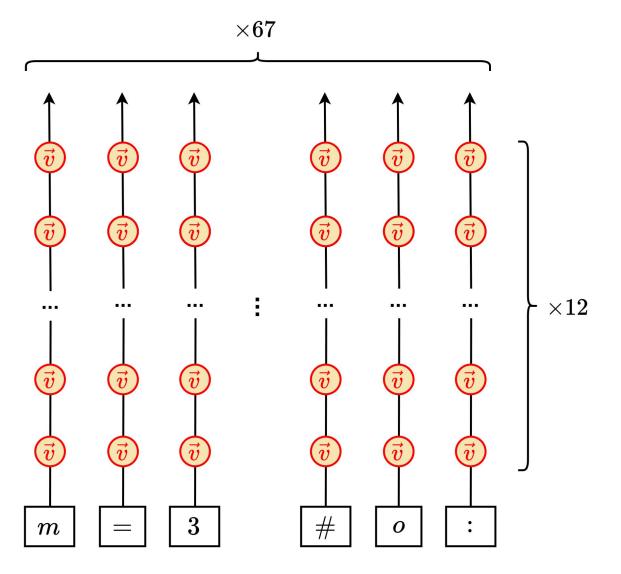
```
referential depth 1 m=3
referential depth 2 b=m
                g=1
                w=3
                i=8
                t=b
referential depth 3
                z = w
                q = b
                q=5
referential depth 4
                1=0
                z=6
                y=b
                c = 7
                n=0
                i=1
          query #0:
```

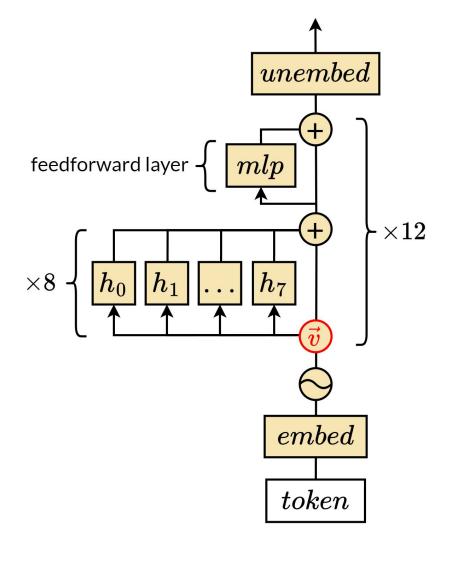
COUNTERFACTUAL INPUT

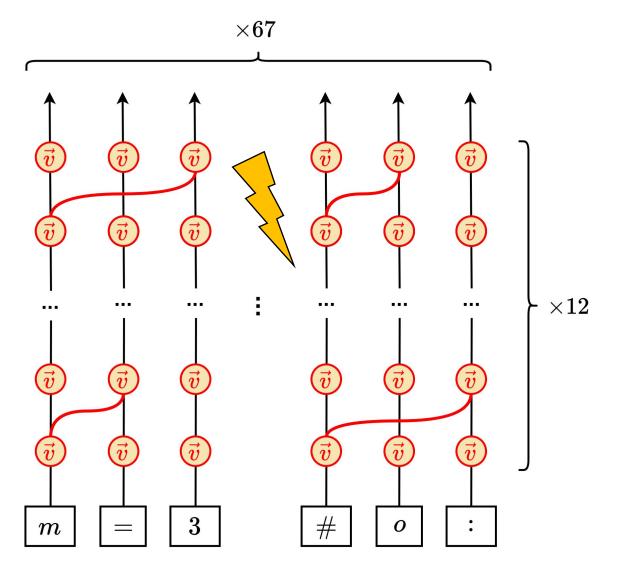
```
referential depth 1 m=8
referential depth 2 b=m
                g=1
                w=3
                i=8
                t=b
referential depth 3
                z = w
                q = b
               q=5
referential depth 4
                1=0
                z=6
                y=b
                c=7
               n=0
                j=1
          query #0:
```

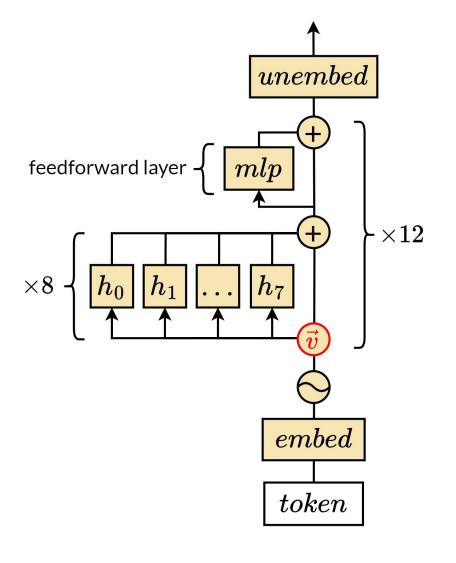


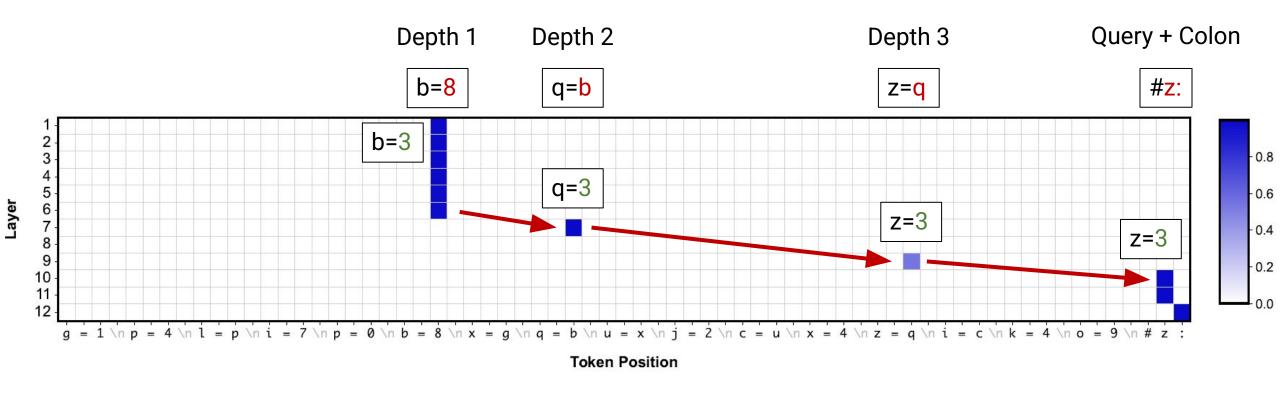




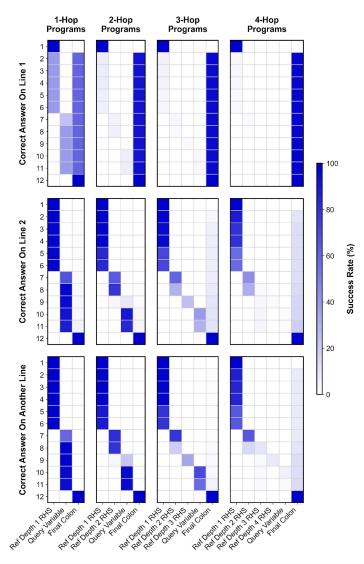




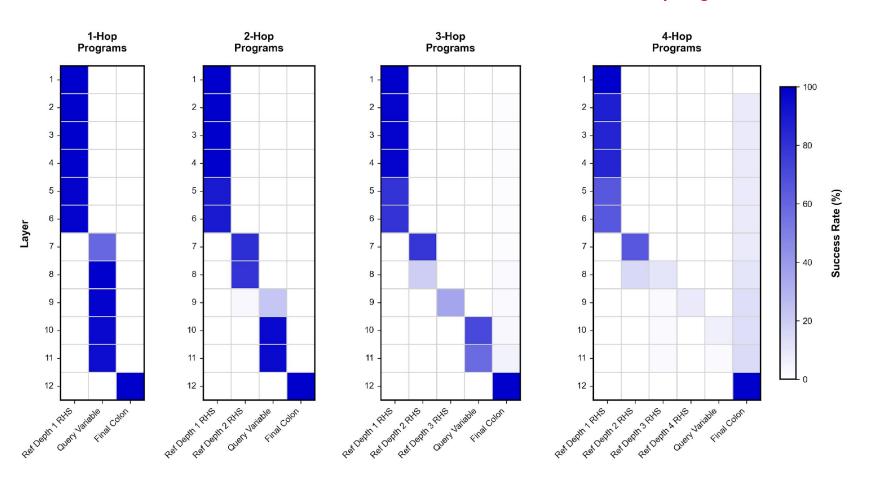


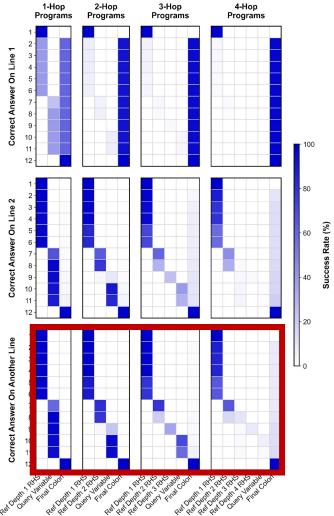


We focus on meaningful token positions (RHS at Ref Depth 1-4, Query, Colon) to aggregate patching results across programs.

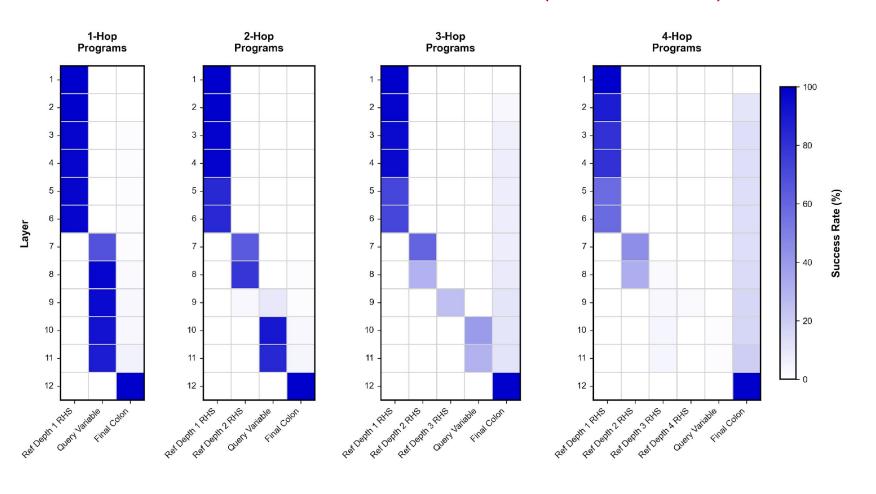


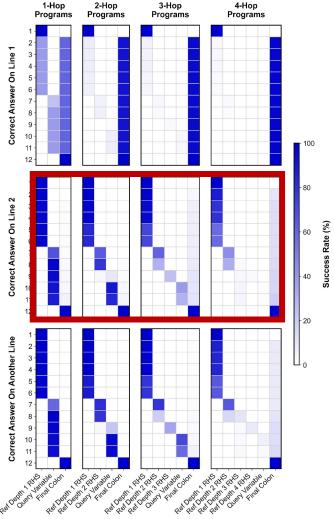
When the correct answer is <u>not</u> in the <u>first two lines</u> of the program:



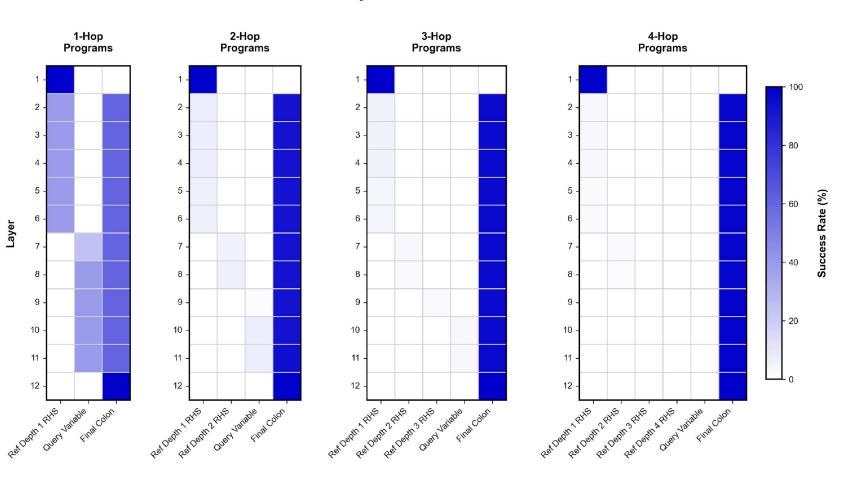


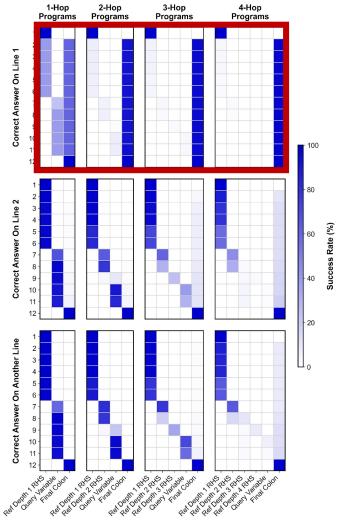
When the correct answer is on the second line (and not the first):



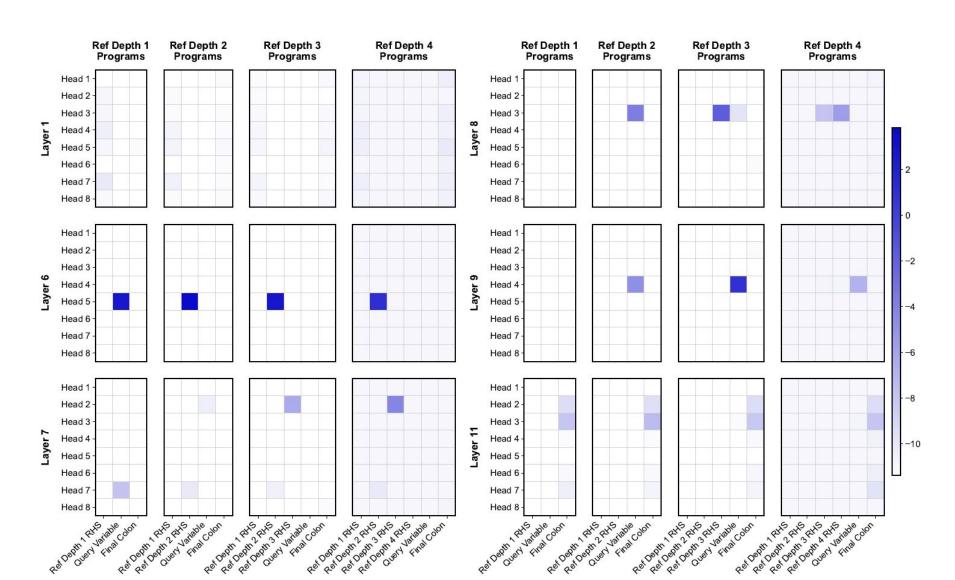


When the correct answer is only on the first line:



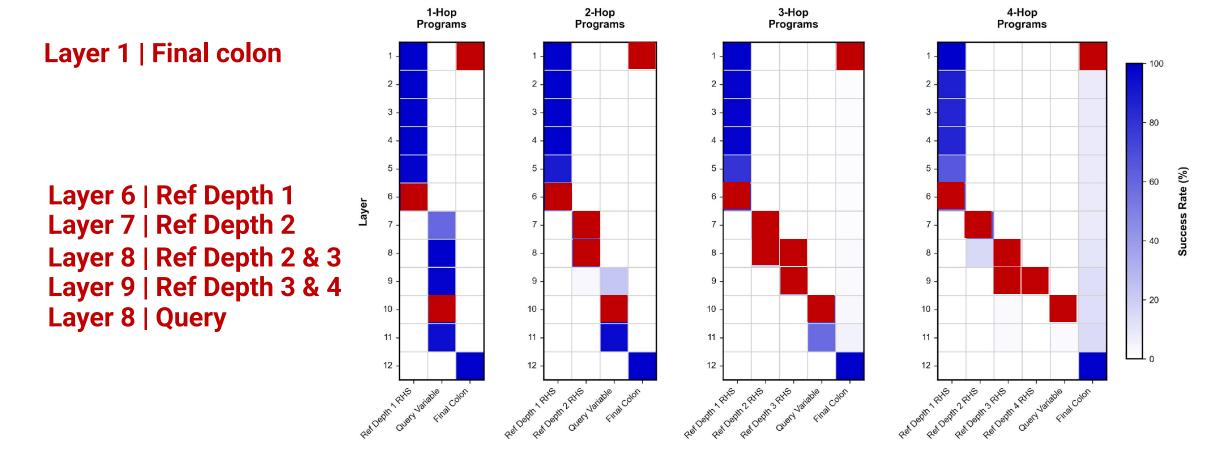


Patching the output of attention heads

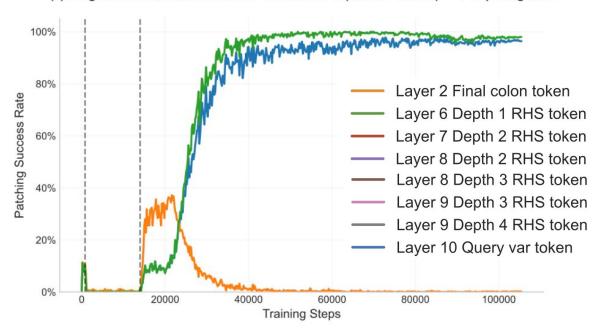


Tracing the developmental trajectory

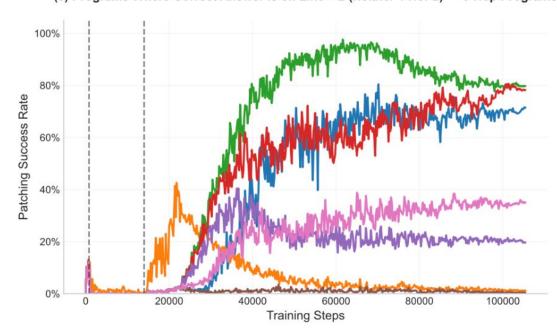
We tracked the evolution of patching success on the residual stream at key (layer, token) positions across training steps:



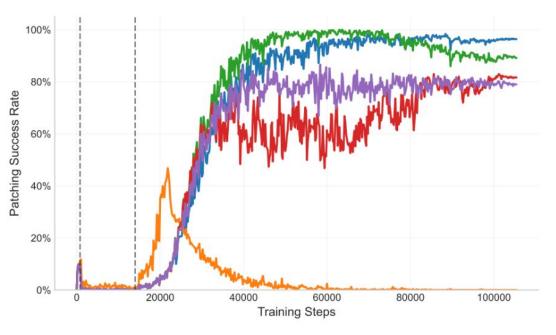
(a) Programs Where Correct Answer is on Line > 2 (Neither 1 Nor 2) — 1-Hop Programs



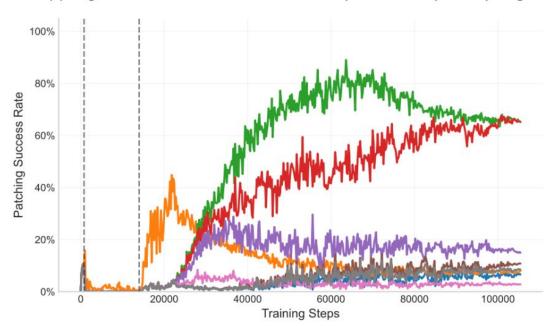
(c) Programs Where Correct Answer is on Line > 2 (Neither 1 Nor 2) — 3-Hop Programs



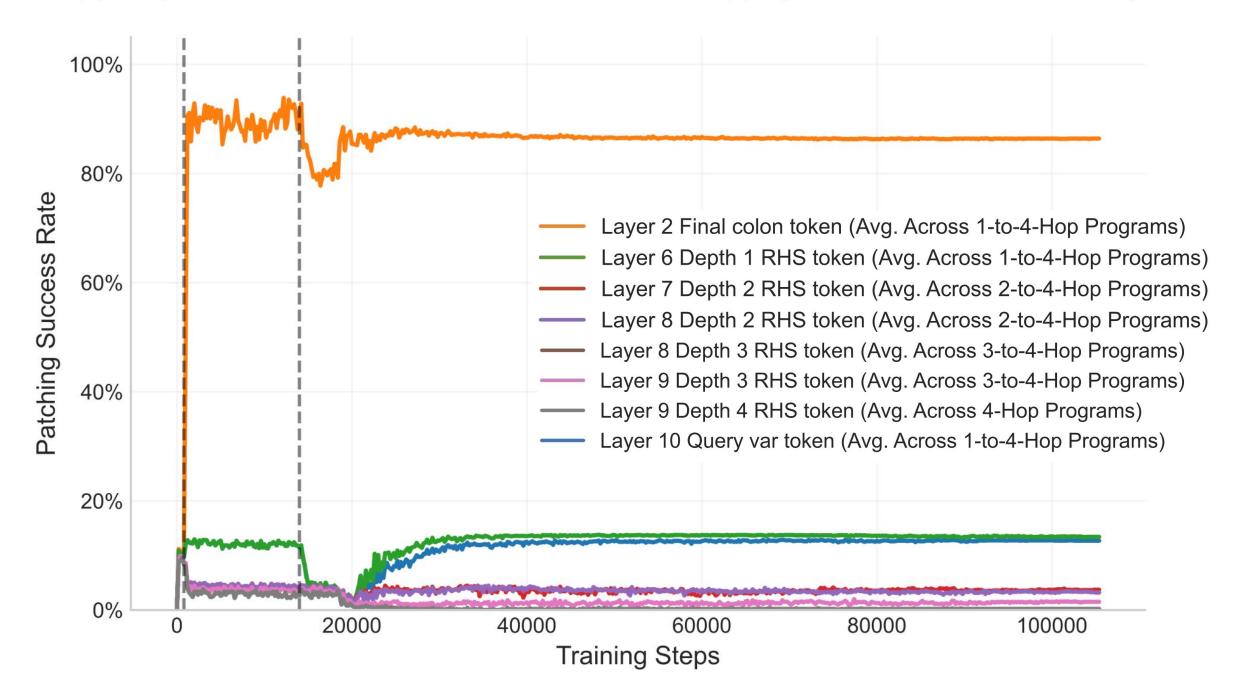
(b) Programs Where Correct Answer is on Line > 2 (Neither 1 Nor 2) — 2-Hop Programs



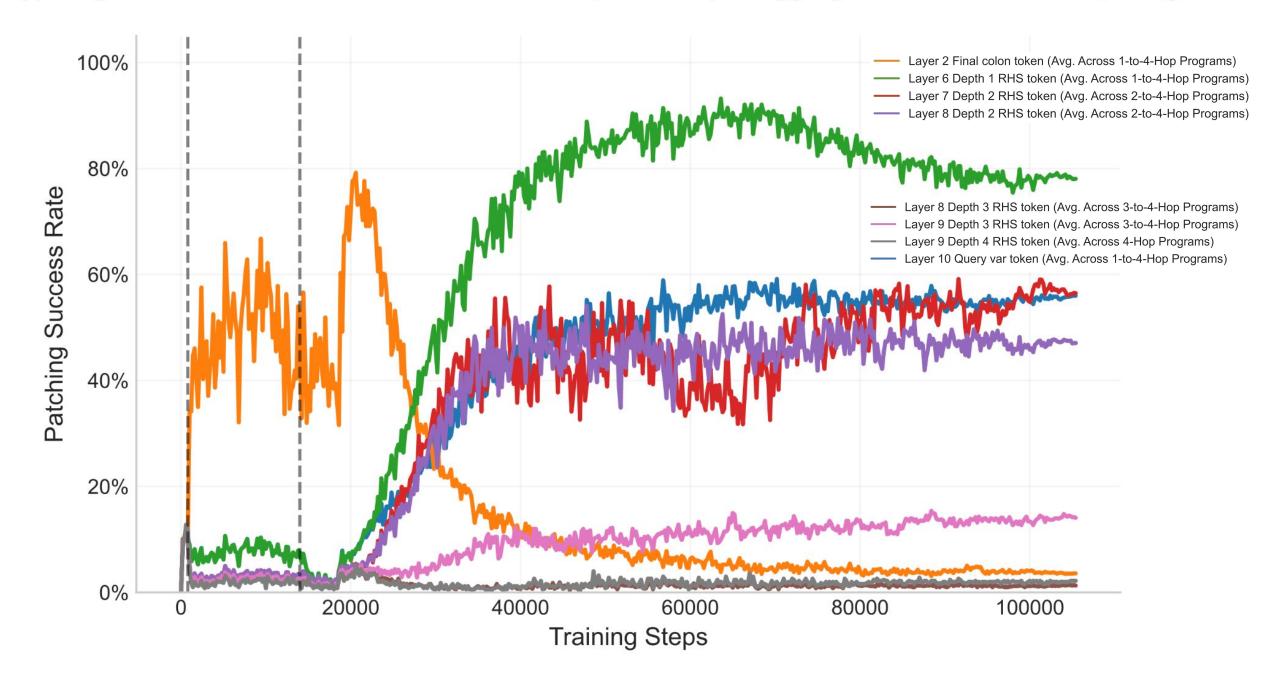
(d) Programs Where Correct Answer is on Line > 2 (Neither 1 Nor 2) — 4-Hop Programs



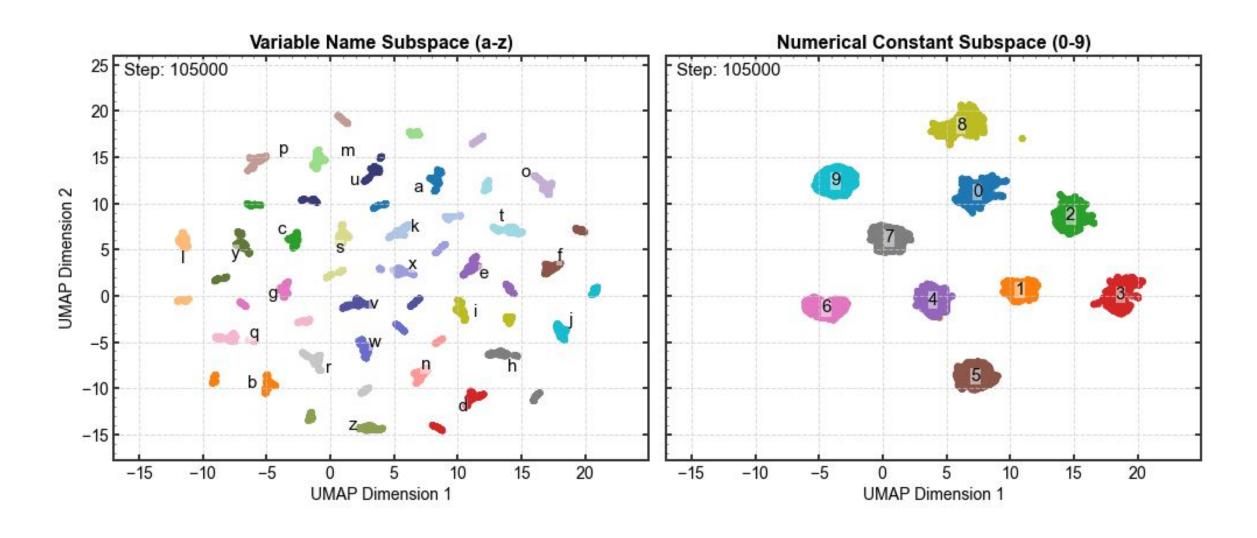
(e) Programs Where Correct Answer is on Line 1 — Aggregated Across 1-to-4-Hop Programs



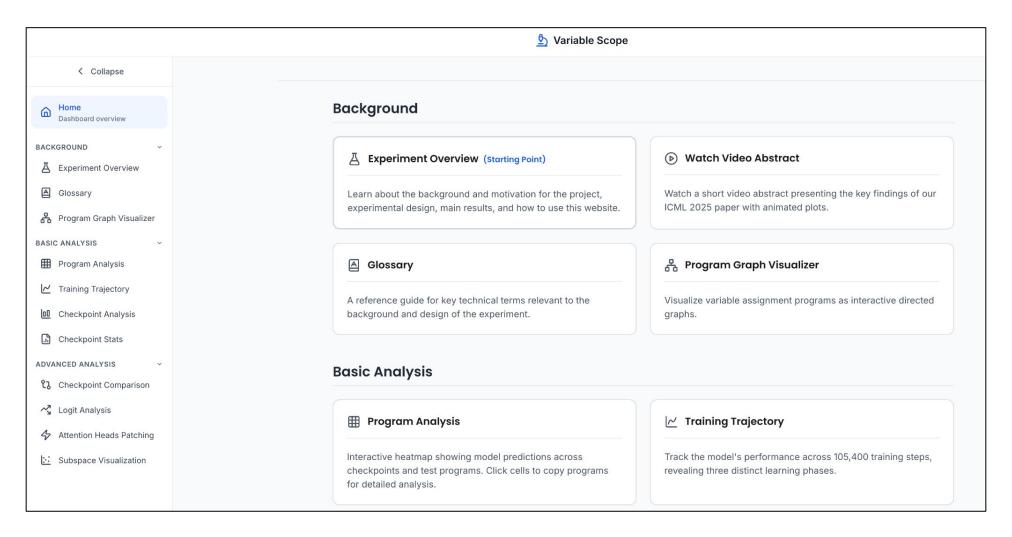
(f) Programs Where Correct Answer is on Line 2 (But Not 1) — Aggregated Across 1-to-4-Hop Programs



Two subspaces



Introducing: Variable Scope



Questions