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ABSTRACT

Financial fraud detection presents a critical challenge: balancing high model accu-
racy with stringent data privacy regulations such as GDPR and CCPA. Centralized
machine learning approaches, which require pooled transaction data, pose sig-
nificant privacy risks, while institution-specific models suffer from data scarcity.
We propose a privacy-preserving framework for fraud detection using Horizon-
tal Federated Learning (HFL). Our study compares three paradigms: (i) global
centralized models, (ii) partially isolated models, and (iii) HFL, trained using
FedAvg with the Flower framework using deep learning. Experiments on the
BAF-base datasets simulate real-world fraud detection scenarios, evaluating key
performance metrics, including ROC-AUC, and time efficiency. We benchmark
comparisons with SOTA models on the BAF-base dataset to validate our approach
further. The results highlight trade-offs between data privacy, model performance,
and generalization ability, demonstrating that Federated Learning is a viable alter-
native that effectively balances security, efficiency, and predictive performance in
financial fraud detection.

1 INTRODUCTION

Financial fraud is an escalating threat, costing global bank institutions billions of dollars annually.
Traditional fraud detection models rely on centralized machine learning, requiring access to large
amounts of transaction data. However, privacy regulations such as the General Data Protection
Regulation (GDPR) (European Parliament, 2016), the California Consumer Privacy Act (CCPA)
(California Legislative Information, 2018), and the Revised Payment Services Directive (PSD2)
(European Parliament, 2015) restrict data sharing across institutions, limiting the effectiveness of
these models. This creates a tension between improving fraud detection and ensuring data privacy.
Federated Learning offers a promising solution by allowing multiple banks to train a fraud detection
model collaboratively without sharing raw customer data. Specifically, Horizontal Federated Learn-
ing (HFL) (Malgorzata et al., 2024) enables institutions with similar data structures (e.g., different
banks with transaction records) to jointly improve fraud detection while using the HFL privacy-
preserving framework that allows banks to detect fraud patterns across institutions while keeping
data local.

In our approach, we use Federated Averaging (FedAvg) with the Flower framework to train models
across multiple institutions while preserving data locally. While FedAvg ensures that raw data re-
mains on client devices, it does not inherently provide secure aggregation. We demonstrate that our
method maintains data privacy by preventing direct data sharing and achieves a competitive fraud
detection accuracy compared to single-institution models while maintaining data security. We also
leverage attention mechanism as one of our federated approaches, detailed in Section 3, with visual
representations of the federated MLP and federated transformer workflows, presented in Figures 2
and 3 respectively, including comparison results with existing SOTA benchmarks on BAF fraud
detection data. Our contributions:

1. Demonstrates the feasibility and effectiveness of using FL for collaborative machine learn-
ing in the fintech & banking industry.

*These authors contributed equally to this work.
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2. Provide a practical example of how banks and fintech companies can build a robust fraud
detection model using FL.

3. Shows that FL is capable of achieving similar model accuracy to a centralized approach
while preserving data privacy.

4. Securely aggregate the model parameters without the central body having access to the
raw data, demonstrating improved fraud detection accuracy and efficiency over traditional
models.

5. Introduces a federated transformer-based architecture, outperforming the previous MLP
based HFL model, validated on the BAF dataset.

2 RELATED WORKS

Traditional Fraud Detection in Banking Traditional fraud detection in banking relies on central-
ized machine learning models trained on a single institution’s dataset. Approaches like supervised
learning (e.g., Random Forest, XGBoost, Neural Networks) and unsupervised anomaly detection
methods (e.g., Auto-encoders, Isolation Forests) are common. However, these models often suf-
fer from data limitations and lack cross-institutional fraud intelligence, making them less effective
against new fraud patterns.

Several surveys detail the evolution of fraud detection techniques. (Nilofar et al., 2022), provide
an overview of rule-based systems, machine learning models, and deep learning techniques for
detecting fraudulent transactions. (Clifton et al., 2010), categorize fraud detection methods into
statistical approaches, AI-based methods, and hybrid systems used in banking, telecommunications,
and cybersecurity. (Andrea Dal et al., 2017), discuss state-of-the-art machine learning approaches,
emphasizing the challenges of class imbalance, real-time detection, and feature engineering.

Federated Learning for Financial Applications Federated Learning (FL) has emerged as a
promising technique for collaborative machine learning while preserving data privacy. (Keith et al.,
2016a), introduced FL to enable decentralized training without exposing raw data. (Stephen et al.,
2017), applied FL in financial risk assessment, demonstrating its ability to train models across banks
without violating privacy regulations. Recent research has explored FL for fraud detection, such
as (Wensi et al., 2019), where different institutions hold different feature sets for the same users. In
contrast, Horizontal Federated Learning, which allows multiple banks with similar data structures
to collaborate, remains under-explored in fraud detection.

Privacy-Preserving Techniques in FL FL include Secure Aggregation (Keith et al., 2016b),
which encrypts model updates to prevent information leaks; Differential Privacy (Martı́n et al.,
2016), which introduces noise to model updates to prevent sensitive data reconstruction; and Homo-
morphic Encryption & Secure Multi-Party Computation (Gentry, 2009), which allows encrypted
computations to enhance privacy protection. Despite its promise, FL introduces potential risks,
including data leakage and susceptibility to adversarial attacks, which numerous studies actively
address.

Challenges in FL for Fraud Detection Existing FL applications face challenges in data hetero-
geneity, communication efficiency, and adversarial robustness. (Tian et al., 2020) proposed optimiza-
tion techniques for handling non-IID (non-independent and identically distributed) data. (Pranav
et al., 2020), explored adversarial attacks on FL, which is crucial for fraud detection where fraud
patterns vary across banks. Showing that model poisoning could degrade performance, making se-
curity measures essential. In response to these challenges, we specifically investigate whether banks
and fintech companies can leverage FL to develop accurate predictive models without sharing sensi-
tive customer data and how FL-based solutions compare to conventional data pooling methods. We
also explore whether FL can effectively mitigate data scarcity and privacy constraints that frequently
hamper collaboration in the banking sector.
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(a) Traditional Data Pooling and Model Training (b) Federated (Horizontal) Model Training

Figure 1: Comparison of traditional centralized (a) and federated (b) approaches to fraud detection
model training

3 DATASET & METHODOLOGY

3.1 OVERVIEW

In the Horizontal Federated Learning (HFL) training paradigm, (Malgorzata et al., 2024) introduced
an approach that mitigates the challenges of traditional machine learning, particularly reducing ex-
posure to sensitive sector-specific data while ensuring optimized performance. For our study, we
utilized the Bank Account Fraud (BAF) dataset (Jesus et al., 2022), a bank account creation dataset
from Kaggle, to replicate the financial situation in a real-world banking scenario. The dataset was
originally designed to replicate real-world financial fraud scenarios, providing a comprehensive and
realistic testbed for evaluating machine learning and fairness-aware fraud detection techniques. To
create a realistic federated learning environment, we simulated five distinct clients, representing dif-
ferent financial institutions, we realized a significant amount of class imbalance of the negative class
samples to their corresponding positive class samples, we then downsampled the negative class by
retaining 2% of its instances to achieve a more balanced marginal distribution.

Finally, we orchestrated and simulated these clients to prepare them for federated model training,
ensuring that each client retained its local data while contributing to the collaborative learning pro-
cess.

3.2 TRAINING PARADIGMS

To distinguish the differences in paradigms of centralized and decentralized collaborative fraud de-
tection strategies, we evaluate three distinct training paradigms, including the HFL technique;

Global Centralized Models As illustrated in Figure 1a, the global traditional model follows
the conventional machine learning workflow, where all our combined simulated client data is
pooled into a central repository and trains a single model on this pooled dataset. The entire data
pipeline—loading, preprocessing, and feature engineering—occurs on a single platform where the
unified dataset trains a shared model. We used four algorithms in this aspect (Logistic Regression,
Random Forest, XGBoost, LightGBM), which were split into train-validate-test (80-10-10) splits.
This approach assumes full data sharing between client’s data, with raw transaction records central-
ized on one server. Although effective for model accuracy, global pooling raises practical concerns,
as this violates GDPR principles by exposing sensitive customer data.

Partial Isolated Models Partial models simulate a scenario where each client operates in complete
isolation. We trained each client with an independent XGBoost classifier (selected for its balance of
recall and precision in fraud detection), using only each client’s partitioned dataset (client 0, client 1,
client 2, client 3, and client 4). Our training mirrors the global approach but operates on siloed data:
client-specific splits are processed locally without any cross-institutional coordination. Although
preserving privacy data by avoiding sharing, this approach suffers from the limited sample size, i.e
about 20% of the global data per client, and fails to leverage a collective fraud pattern across the
board

Horizontal Federated Learning (HFL) Model Our federated learning framework, inspired by
the work of (Malgorzata et al., 2024), has been adapted for partitioned bank clients as in Figure 1b,
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Figure 2: MLP (HFL) architecture for fraud detection

using flower (Daniel J. et al., 2020) with neural networks. In this setup, clients retain their raw data
locally, as we explored two methodological approaches for collaborative training.

We first used a three-layer Multilayer Perceptron (MLP) with a structured architecture of 51 → 25
→ 15 → 2 nodes (see Figure 2), through a secure parameter exchange:

1. Local Training: Each client initializes a neural network and trains for 12 epochs per com-
munication round using the Adam optimizer (LR = 0.01). Our architecture integrates ReLU
activations between the hidden layers to enhance learning performance.

2. Secure Aggregation: Model weights are encrypted and sent to our custom central server.
This server applies Federated Averaging, (Pranav et al., 2020) FedAvg strategy in Flower,
combining updates from all 5 clients while filtering outliers using weighted averaging.

3. Global Synchronization: Updated parameters are evaluated and redistributed to the FL
clients for the next round, iterating for 20 rounds total.

In addition, we further explored an advanced model, where we used a federated transformer archi-
tecture. The transformer incorporates two encoder layers with multi-head self-attention and feedfor-
ward networks, which enhances the performance of non-IID features among clients’ data that might
not have correlated statistical distributions. This enhancement occurs through the transformer’s abil-
ity to capture complex dependencies regardless of feature position or distribution characteristics.
Specifically, just like in the attention paper (Vaswani et al., 2017),

MultiHead(Q,K,V) = Concat(head1, . . . , headh)W
O (1)

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (2)

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V (3)

FFN(x) = max(0,xW1 + b1)W2 + b2 (4)

the multi-head self-attention mechanism allows the model to attend to different representation sub-
spaces simultaneously. When dealing with bank fraud detection, transaction patterns may vary
significantly across institutions due to different customer bases, regional behaviors, or bank-specific
services. The self-attention mechanism enables the model to identify fraud patterns by focusing on
relevant feature interactions rather than relying on consistent statistical distributions. Furthermore,
the federated transformer architecture has input embeddings and positional encoding, culminating
in an output linear layer, which also follows the same secure parameter exchange during training,
only with a slightly different initialization step. Unlike the local training step used by the federated
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Figure 3: Federated Transformer architecture for fraud detection

MLP approach, in the federated transformer architecture, the server creates an initial transformer-
based fraud detection model with a defined architecture in Figure 3. This initialization establishes
the starting parameters that will be distributed to all participating clients.

These two approaches enforce data minimization by design: clients process data locally and the
server only handles encrypted weight tensors (ndarrays_to_parameters conversion). While
differential privacy and SMPC are planned for production deployments discussed in Section 5, the
current simulation uses basic parameter encryption through Flower’s built-in privacy safeguards.
This tripartite paradigm systematically explores the accuracy-privacy trade-off inherent in collab-
orative fraud detection, providing a foundation for evaluating FL’s viability in regulated financial
environments.

4 EXPERIMENTS

4.1 RESULTS

We detailed our evaluated results in Table 1, which shows the collaborative training paradigms
focused on ROC-AUC scores to quantify fraud detection performance across methodologies and
their respective training time. For the global centralized model, four algorithms were trained on
the pooled data, with LightGBM achieving the highest ROC-AUC (0.89), followed by XGBoost
and Random Forest (0.88), and Logistic Regression (0.87), showing an upper bound baseline under
unrestricted data sharing conditions.

In the partial isolated models, five clients trained independently using XGBoost. ROC-AUC scores
varied across clients, ranging from 0.87 (Client 2) to 0.90 (Client 3), with a mean of 0.88 (±0.01
standard deviation). This reflects the impact of data heterogeneity and localized training limitations.

For the federated models, both trained for 20 rounds, the federated MLP achieved an ROC-AUC of
0.86, and the federated transformer achieved a 1% gain above the federated MLP. While marginally
lower than the global LightGBM (0.89), it achieved the same result with three of the five partial
models and surpassed one, demonstrating competitive performance without raw data exchange.

We also benchmark our HFL fraud detection models on the BAF-base data against other SOTA
methods in Table 2, which were mostly from RIFF Martins et al. (2024).

Although the global and partial models slightly outperform our HFL approaches in terms of ROC-
AUC, HFL adheres to the GDPR principles by preserving data privacy—offering a near-equivalent
yet more secure option for collaborative fraud detection.
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Table 1: Performance Metrics and Training Time for Selected Models Across Paradigms. For Global
Centralized, LightGBM achieved the highest ROC-AUC (0.89). For Partial Isolated, Client 3 had
the highest ROC-AUC (0.90). Federated models include MLP (ROC-AUC = 0.86) and Transformer
(ROC-AUC = 0.87).

Paradigm Model/Client ROC-AUC Training Time (s)
Global Centralized LightGBM 0.89 5.13
Partial Isolated Client 3 0.90 14.98
Federated (HFL) MLP 0.86 164.17
Federated (HFL) Transformer 0.87 675.18

Table 2: SOTA Benchmark on Fraud Detection BAF-Base Data. Asterisked models with Bold values
show our HFL model performances compared to other models from the benchmark.

Model Recall @1% FPR
LightGBM 25.2%
Federated Transformer* 25%
FIGS 21%
MLP+HFL* 19%
CART+RIFF 18.4%
CART 16%

4.2 LIMITATIONS

While our study demonstrates the feasibility and effectiveness of Horizontal Federated Learning
(HFL) for fraud detection in banking, it is important to acknowledge the limitations associated with
computational and communication overhead, including latency.

Federated learning, while effective for privacy-preserving fraud detection, incurs significant com-
putational and communication costs compared to centralized methods. The federated Transformer
model, with its advanced architecture, requires more training time (675.18 seconds) than the feder-
ated MLP (164.17 seconds) or centralized LightGBM (78.43 seconds) models (see Table 3). Com-
munication demands are also higher, with the Transformer model having its total training communi-
cation rise to 138.6MB, exchanged for 20 rounds within 5 clients, considering both client-to-server
and server-to-client iterations. This represents a 9,800% increase over the federated MLP’s training
communication (1.4MB), which, despite higher training efficiency, introduces higher latency during
communication due to frequent data exchanges across nodes. As such, the federated approach incurs
additional delays and resource consumption when compared to centralized methods, which do not
face the same complexities due to the absence of aggregated servers. These overheads, detailed in
Table 3, grow with model complexity, as seen in the Transformer’s substantial demands versus the
MLP’s more manageable costs.

Table 3: Computational and Communication Overhead for Different Approaches

Approach Model Training Time (s) Training Communication (MB)
Centralized All 78.43 0
Partial Isolated XGBoost 15.37 0
Federated MLP 164.17 1.4
Federated Transformer 675.18 138.6

5 DISCUSSION

This research demonstrates that, through simulated bank account opening data, Federated Learning
(FL) enabled secure collaboration among clients’ banking institutions, alleviated data scarcity is-
sues, and maintained a strong ROC-AUC score. By comparing centralized, partially isolated, and
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federated approaches, we show that Horizontal Federated Learning (HFL) achieves an effective bal-
ance between predictive performance and data privacy. Our experiments using the BAF-base dataset
reveal that federated models, especially those based on transformer architectures, can match or even
outperform traditional centralized models as more clients join the collaborative training, all while
preserving data security. These findings validate the potential of federated learning as a scalable and
regulation-compliant solution for collaborative fraud detection across financial institutions.

While our approach has shown promising results, we acknowledge certain limitations in Subsec-
tion 4.2. Future work could focus on advanced hyperparameter tuning to further enhance accuracy
with a lower computational cost. Additionally, exploring other privacy-enhancing techniques, such
as Secure Multi-Party Computation (SMPC) for encrypting data and computation, differential pri-
vacy for adding controlled noise to model updates, and Secure Aggregation (SecAgg) or Homomor-
phic Encryption (HE) for enhanced privacy protection incorporated with deep learning, could help
ensure scalable and secure solutions for financial applications.
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