Layer Query Networks For Test Time Training

many thanks to Jason for help:-)

Where I am in the process

- 3/3/2/2 NeurIPS, Rating scale 6.
- Reviewers liked idea, concerns on clarity
 - My writing was not clear, could be better.
 - Too vague, and ambitious in some places.
- Withdrew
- Resubmitting toned down version to AAAI Phase 1-> ICLR.
- Any Feedback greatly welcome :-)

- Classically:
 - Neural nets are trained on a dataset.
 - Weights are kept fixed during deployment.
- Test Time Training (TTT)
 - Train the network even during testing.
 - Can we learn on a single sample?

- First, i will describe what is TTT
- And then go into problem statement

Clarifying Experimental Setup

- A brief overlook at **TEST TIME TRAINING** setup.
 - Originally, introduced by Yu Sun & Alexei Efros (Berkeley)

https://yueatsprograms.github.io/ttt/home.html

TEST-TIME-TRAINING SETUP (TRAINING PHASE)

- Done on Train set.

TEST-TIME-TRAINING SETUP

(TESTING PHASE)

TEST-TIME-TRAINING SETUP (TESTING PHASE)

These steps are repeated for many iterations - In practice, 15-20 iterations.

TEST-TIME-TRAINING SETUP (TESTING PHASE)

- The Downstream Head never sees Test-labels.
- x' is inference without any test labels.
- The claim is that x' (features with TTT) are better than x. So better downstream performance.

PROBLEM STATEMENT

- Suppose you want to distill all features of teacher. All the layers.
- M1: Student architecture = Teacher.
 (Fwd pass slow, since teacher = VIT)
- M2: Distill only last layer. (Cant use intermediate feature representations)

 Key q: How to distill all layers without running into computational bottlenecks.
- Chicken and egg problem.

Seems like an impossible paradox :-)

LAYER QUERY NETWORKS

LAYER QUERY NETWORKS

LAYER QUERY NETWORKS

Some important questions we could ask ourselves

- How does TTT help on classification
- What happens on Distribution Shifted datasets.
 - For eg, can the network adapt when it sees samples corrupted by variety of noises,
- On segmentation:
 - Can TTT show better qualitative results/quantitative numbers
- Are there any broader insights we could take away?

Table 2: LQN's Robustness to Natural Distribution Shifts. CoOp and CoCoOp are tuned on ImageNet using 16-shot training data per category. Baseline CLIP, prompt ensemble, TPT, APM and LQN do not require training data. A ✓ in P means that method leveraged pre-trained weights on clean variant of train set aka, Image-net and downstream-ttt on corrupted version.

Method	P	ImageNet Top1 acc. ↑	ImageNet-A Top1 acc. ↑	ImageNet-V2 Top1 acc. ↑	ImageNet-R Top1 acc. ↑	ImageNet-Sketch Top1 acc. ↑	Average	OOD Average
CLIP-ViT-B/16(t)	X	66.7	47.8	60.8	73.9	46.0	59.1	57.2
Ensemble	X	68.3	49.8	61.8	77.6	48.2	61.2	59.4
TPT	X	68.9	54.7	63.4	77.0	47.9	62.4	60.8
APM	X	68.1	52.1	67.2	76.5	49.3	62.6	61.2
LQN (Two-Word) (Ours)	X	68.7	53.2	67.8	77.1	50.1	63.4	61.8
LQN (3DLoc-Binded) (Ours)	X	69.4	54.5	68.5	78.0	51.0	64.3	62.7
СоОр	/	71.5	49.7	64.2	75.2	47.9	61.7	59.2
CoCoOp	1	71.0	50.6	64.0	76.1	48.7	62.1	59.9
TPT + CoOp	1	73.6	57.9	66.8	77.2	49.2	64.9	62.8
TPT + CoCoOp	1	71.0	58.4	64.8	78.6	48.4	64.3	62.6
CLIP VIT-L/14(t)	X	76.2	69.6	72.1	85.9	58.8	72.5	71.6
APM	Х	77.3	71.8	72.8	87.1	62.2	74.2	73.4
LQN (Two-Word) (Ours)	X	77.9	73.0	73.6	88.2	63.0	75.1	74.3
LQN (3DLoc-Binded) (Ours)	X	78.6	74.2	74.3	89.1	64.1	76.1	75.3
OpenCLIP-VIT-H/14(t)	X	81.6	79.1	80.7	92.9	72.8	81.4	81.3
APM	X	84.6	84.2	83.9	94.9	77.1	84.9	85.0
LQN (Two-Word) (Ours)	X	85.2	85.0	84.7	95.5	78.0	85.7	85.7
LQN 3DLoc-Binded (Ours)	X	86.0	86.1	85.3	96.2	79.0	86.5	86.6

Table 2: LQN's Robustness to Natural Distribution Shifts. CoOp and CoCoOp are tuned on ImageNet using 16-shot training data per category. Baseline CLIP, prompt ensemble, TPT, APM and LQN do not require training data. A ✓ in P means that method leveraged pre-trained weights on clean variant of train set aka, Image-net and downstream-ttt on corrupted version.

Method	P	ImageNet Top1 acc. ↑	ImageNet-A Top1 acc. ↑	ImageNet-V2 Top1 acc. ↑	ImageNet-R Top1 acc. ↑	ImageNet-Sketch Top1 acc. ↑	Average	OOD Average
CLIP-ViT-B/16(t)	X	66.7	47.8	60.8	73.9	46.0	59.1	57.2
Ensemble	X	68.3	49.8	61.8	77.6	48.2	61.2	59.4
TPT	X	68.9	54.7	63.4	77.0	47.9	62.4	60.8
APM	X	68.1	52.1	67.2	76.5	49.3	62.6	61.2
LQN (Two-Word) (Ours)	X	68.7	53.2	67.8	77.1	50.1	63.4	61.8
LQN (3DLoc-Binded) (Ours)	X	69.4	54.5	68.5	78.0	51.0	64.3	62.7
СоОр	1	71.5	49.7	64.2	75.2	47.9	61.7	59.2
CoCoOp	1	71.0	50.6	64.0	76.1	48.7	62.1	59.9
TPT + ĈoOp	1	73.6	57.9	66.8	77.2	49.2	64.9	62.8
TPT + CoCoOp	1	71.0	58.4	64.8	78.6	48.4	64.3	62.6
CLIP VIT-L/14(t)	Х	76.2	69.6	<u>72.1</u>	85.9	58.8	72.5	71.6
APM	X	77.3	71.8	72.8	87.1	62.2	74.2	73.4
LQN (Two-Word) (Ours)	Х	77.9	73.0	73.6	88.2	63.0	75.1	74.3
LQN (3DLoc-Binded) (Ours)	X	78.6	74.2	74.3	89.1	64.1	76.1	75.3
OpenCLIP-VIT-H/14(t)	X	81.6	79.1	80.7	92.9	72.8	81.4	81.3
APM	X	84.6	84.2	83.9	94.9	77.1	84.9	85.0
LQN (Two-Word) (Ours)	X	85.2	85.0	84.7	95.5	78.0	85.7	85.7
LQN 3DLoc-Binded (Ours)	X	86.0	86.1	85.3	96.2	79.0	86.5	86.6

Table 2: LQN's Robustness to Natural Distribution Shifts. CoOp and CoCoOp are tuned on ImageNet using 16-shot training data per category. Baseline CLIP, prompt ensemble, TPT, APM and LQN do not require training data. A ✓ in P means that method leveraged pre-trained weights on clean variant of train set aka, Image-net and downstream-ttt on corrupted version.

Method	P	ImageNet Top1 acc. ↑	ImageNet-A Top1 acc. ↑	ImageNet-V2 Top1 acc. ↑	ImageNet-R Top1 acc. ↑	ImageNet-Sketch Top1 acc. ↑	Average	OOD Average
CLIP-ViT-B/16(t)	X	66.7	47.8	60.8	73.9	46.0	59.1	57.2
Ensemble	X	68.3	49.8	61.8	77.6	48.2	61.2	59.4
TPT	X	68.9	54.7	63.4	77.0	47.9	62.4	60.8
APM	X	68.1	52.1	67.2	76.5	49.3	62.6	61.2
LQN (Two-Word) (Ours)	X	68.7	53.2	67.8	77.1	50.1	63.4	61.8
LQN (3DLoc-Binded) (Ours)	X	69.4	54.5	68.5	78.0	51.0	64.3	62.7
СоОр	✓	71.5	49.7	64.2	75.2	47.9	61.7	59.2
CoCoOp	1	71.0	50.6	64.0	76.1	48.7	62.1	59.9
TPT + CoOp	1	73.6	57.9	66.8	77.2	49.2	64.9	62.8
TPT + CoCoOp	1	71.0	58.4	64.8	78.6	48.4	64.3	62.6
CLIP VIT-L/14(t)	X	76.2	69.6	72.1	85.9	58.8	72.5	71.6
APM	X	77.3	71.8	72.8	87.1	62.2	74.2	73.4
LON (Two-Word) (Ours)	Х	77.9	73.0	73.6	88.2	63.0	75.1	74.3
LQN (3DLoc-Binded) (Ours)	X	78.6	74.2	74.3	89.1	64.1	76.1	75.3
OpenCLIP-VIT-H/14(t)	X	81.6	79.1	80.7	92.9	72.8	81.4	81.3
APM	X	84.6	84.2	83.9	94.9	77.1	84.9	85.0
LQN (Two-Word) (Ours)	X	85.2	85.0	84.7	95.5	78.0	85.7	85.7
LQN 3DLoc-Binded (Ours)	X	86.0	86.1	85.3	96.2	79.0	86.5	86.6

Table 2: LQN's Robustness to Natural Distribution Shifts. CoOp and CoCoOp are tuned on ImageNet using 16-shot training data per category. Baseline CLIP, prompt ensemble, TPT, APM and LQN do not require training data. A ✓ in P means that method leveraged pre-trained weights on clean variant of train set aka, Image-net and downstream-ttt on corrupted version.

Method	P	ImageNet Top1 acc. ↑	ImageNet-A Top1 acc. ↑	ImageNet-V2 Top1 acc. ↑	ImageNet-R Top1 acc. ↑	ImageNet-Sketch Top1 acc. ↑	Average	OOD Average
CLIP-ViT-B/16(t)	X	66.7	47.8	60.8	73.9	46.0	59.1	57.2
Ensemble	X	68.3	49.8	61.8	77.6	48.2	61.2	59.4
TPT	X	68.9	54.7	63.4	77.0	47.9	62.4	60.8
APM	X	68.1	52.1	67.2	76.5	49.3	62.6	61.2
LQN (Two-Word) (Ours)	X	68.7	53.2	67.8	77.1	50.1	63.4	61.8
LQN (3DLoc-Binded) (Ours)	X	69.4	54.5	68.5	78.0	51.0	64.3	62.7
СоОр	1	71.5	49.7	64.2	75.2	47.9	61.7	59.2
CoCoOp	1	71.0	50.6	64.0	76.1	48.7	62.1	59.9
TPT + CoOp	1	73.6	57.9	66.8	77.2	49.2	64.9	62.8
TPT + CoCoOp	1	71.0	58.4	64.8	78.6	48.4	64.3	62.6
CLIP VIT-L/14(t)	X	76.2	69.6	72.1	85.9	58.8	72.5	71.6
APM	X	77.3	71.8	72.8	87.1	62.2	74.2	73.4
LQN (Two-Word) (Ours)	X	77.9	73.0	73.6	88.2	63.0	75.1	74.3
LQN (3DLoc-Binded) (Ours)	X	78.6	74.2	74.3	89.1	64.1	76.1	75.3
OpenCLIP-VIT-H/14(t)	X	81.6	79.1	80.7	92.9	72.8	81.4	81.3
APM	X	84.6	84.2	83.9	94.9	77.1	84.9	85.0
LQN (Two-Word) (Ours)	X	85.2	85.0	84.7	95.5	78.0	85.7	85.7
LQN 3DLoc-Binded (Ours)	X	86.0	86.1	85.3	96.2	79.0	86.5	86.6

Table 2: LQN's Robustness to Natural Distribution Shifts. CoOp and CoCoOp are tuned on ImageNet using 16-shot training data per category. Baseline CLIP, prompt ensemble, TPT, APM and LQN do not require training data. A ✓ in P means that method leveraged pre-trained weights on clean variant of train set aka, Image-net and downstream-ttt on corrupted version.

Method	P	ImageNet Top1 acc. ↑	ImageNet-A Top1 acc. ↑	ImageNet-V2 Top1 acc. ↑	ImageNet-R Top1 acc. ↑	ImageNet-Sketch Top1 acc. ↑	Average	OOD Average
CLIP-ViT-B/16(t)	X	66.7	47.8	60.8	73.9	46.0	59.1	57.2
Ensemble	X	68.3	49.8	61.8	77.6	48.2	61.2	59.4
TPT	X	68.9	54.7	63.4	77.0	47.9	62.4	60.8
APM	X	68.1	52.1	67.2	76.5	49.3	62.6	61.2
LQN (Two-Word) (Ours)	X	68.7	53.2	67.8	77.1	50.1	63.4	61.8
LQN (3DLoc-Binded) (Ours)	X	69.4	54.5	68.5	78.0	51.0	64.3	62.7
СоОр	/	71.5	49.7	64.2	75.2	47.9	61.7	59.2
CoCoOp	1	71.0	50.6	64.0	76.1	48.7	62.1	59.9
TPT + CoOp	1	73.6	57.9	66.8	77.2	49.2	64.9	62.8
TPT + CoCoOp	1	71.0	58.4	64.8	78.6	48.4	64.3	62.6
CLIP VIT-L/14(t)	X	76.2	69.6	72.1	85.9	58.8	72.5	71.6
APM	X	77.3	71.8	72.8	87.1	62.2	74.2	73.4
LQN (Two-Word) (Ours)	X	77.9	73.0	73.6	88.2	63.0	75.1	74.3
LQN (3DLoc-Binded) (Ours)	X	78.6	74.2	74.3	89.1	64.1	76.1	75.3
OpenCLIP-VIT-H/14(t)	X	81.6	79.1	80.7	92.9	72.8	81.4	81.3
APM	X	84.6	84.2	83.9	94.9	77.1	84.9	85.0
LON (Two-Word) (Ours)	X	85.2	85.0	84.7	95.5	78.0	85.7	85.7
LQN 3DLoc-Binded (Ours)	X	86.0	86.1	85.3	96.2	79.0	86.5	86.6

Mada a J	Daaldaaa	Due tueinine	D	Cityscape	es val [?]	ADE2	0K val [2	26]	
Method	Backbone	Pre-training	Params	Input size	GFLOPs	mIoU	Input size	GFLOP	s mIoU	
Mask2Former [†] [33]	Swin-L [34]	IN21K	216M	1024×2048	_	83.3	640^{2}	_	56.1	
MaskDINO [†] [39]	Swin-L [34]	IN21K	223M	_	_	_	640^{2}	_	56.6	
OneFormer [†] [37]	ConvNext-XL [36]	IN21K	373M	1024×2048	775	83.6	640^{2}	607	57.4	
OneFormer [†] [37]	DiNAT-L [38]	IN21K	223M	1024×2048	450	83.1	896^{2}	678	58.1	
kMaX-DeepLab [35]	ConvNext-L [36]	IN21K	232M	1025×2049	1673	83.5	_	_	_	
Mask2Former [33]	ViT-L [17]	DINOv2 + DA	_	896×1792	_	84.8	896 ²	_	59.4	
Mask2Former [‡] [33]	ViT-Adapter-L [‡] [40]	DINOv2	351M	1024^{2}	5200	84.5	512^2	910	58.9	
EoMT(t)	ViT-L [17]	DINOv2	319M	1024^{2}	4350	84.2	512^2	721	58.4	
APM [§]	MLP [41]	DINOv2	350M	1024^{2}	4540	85.1	512^2	911	58.8	
LQN-3DBinded(Ours)	§ MLP [41]	DINOv2	350M	1024^{2}	4490	85.7	512^2	861	61.2	

Madeal	Daalshana	Day tasining	D	Cityscape	es val [?	s val [?]		0K val [26]	
Method	Backbone	Pre-training	Params	Input size	GFLOPs	mIoU	Input size	GFLOP	s mIoU	
Mask2Former [†] [33]	Swin-L [34]	IN21K	216M	1024×2048	_	83.3	640^{2}	_	56.1	
MaskDINO [†] [39]	Swin-L [34]	IN21K	223M	_	_	_	640^{2}	_	56.6	
OneFormer [†] [37]	ConvNext-XL [36]	IN21K	373M	1024×2048	775	83.6	640^{2}	607	57.4	
OneFormer [†] [37]	DiNAT-L [38]	IN21K	223M	1024×2048	450	83.1	896^{2}	678	58.1	
kMaX-DeepLab [35]	ConvNext-L [36]	IN21K	232M	1025×2049	1673	83.5	_	_	_	
Mask2Former [33]	ViT-L [17]	DINOv2 + DA	_	896×1792	_	84.8	896^{2}	_	59.4	
Mask2Former [‡] [33]	ViT-Adapter-L [‡] [40]	DINOv2	351M	1024^{2}	5200	84.5	512^2	910	58.9	
EoMT(t)	ViT-L [17]	DINOv2	319M	1024^{2}	4350	84.2	512^2	721	58.4	
APM [§]	MLP [41]	DINOv2	350M	1024^{2}	4540	85.1	512^{2}	911	58.8	
LQN-3DBinded(Ours)	§ MLP [41]	DINOv2	350M	1024^{2}	4490	85.7	512^2	861	61.2	

Made a I	Dealthana	Due tueinine	D	Cityscape	Cityscapes val [?]			ADE20K val [26]		
Method	Backbone	Pre-training	Params	Input size	GFLOPs	s mIoU	Input size	GFLOP	s mIoU	
Mask2Former [†] [33]	Swin-L [34]	IN21K	216M	1024×2048	_	83.3	640^{2}	_	56.1	
MaskDINO [†] [39]	Swin-L [34]	IN21K	223M	_	_	_	640^{2}	_	56.6	
OneFormer [†] [37]	ConvNext-XL [36]	IN21K	373M	1024×2048	775	83.6	640^{2}	607	57.4	
OneFormer [†] [37]	DiNAT-L [38]	IN21K	223M	1024×2048	450	83.1	896^2	678	58.1	
kMaX-DeepLab [35]	ConvNext-L [36]	IN21K	232M	1025×2049	1673	83.5	_	_	_	
Mask2Former [33]	ViT-L [17]	DINOv2 + DA	_	896×1792	_	84.8	896^{2}	_	59.4	
Mask2Former [‡] [33]	ViT-Adapter-L [‡] [40]	DINOv2	351M	1024^{2}	5200	84.5	512^2	910	58.9	
EoMT(t)	ViT-L [17]	DINOv2	319M	1024^{2}	4350	84.2	512^2	721	58.4	
APM [§]	MLP [41]	DINOv2	350M	1024^{2}	4540	85.1	512^{2}	911	58.8	
LQN-3DBinded(Ours) ⁵	MLP [41]	DINOv2	350M	1024^{2}	4490	85.7	512^2	861	61.2	

Made 4	Daaldaaa	Dua tuainina T		Cityscape	es val [?]	ADE2	0K val [26]
Method	Backbone	Pre-training	Params	Input size	GFLOP	s mIoU	Input size	GFLOP	s mIoU
Mask2Former [†] [33]	Swin-L [34]	IN21K	216M	1024×2048	_	83.3	640^2	_	56.1
MaskDINO [†] [39]	Swin-L [34]	IN21K	223M	_	_	_	640^{2}	_	56.6
OneFormer [†] [37]	ConvNext-XL [36]	IN21K	373M	1024×2048	775	83.6	640^{2}	607	57.4
OneFormer [†] [37]	DiNAT-L [38]	IN21K	223M	1024×2048	450	83.1	896^2	678	58.1
kMaX-DeepLab [35]	ConvNext-L [36]	IN21K	232M	1025×2049	1673	83.5	_	_	_
Mask2Former [33]	ViT-L [17]	DINOv2 + DA	_	896×1792	_	84.8	896^{2}	_	59.4
Mask2Former [‡] [33]	ViT-Adapter-L [‡] [40]	DINOv2	351M	1024^{2}	5200	84.5	512^2	910	58.9
EoMT(t)	ViT-L [17]	DINOv2	319M	1024^{2}	4350	84.2	512^2	721	58.4
APM [§]	MLP [41]	DINOv2	350M	1024^{2}	4540	85.1	512^2	911	58.8
LQN-3DBinded(Ours)	§ MLP [41]	DINOv2	350M	1024^2	4490	85.7	512^2	861	61.2

- TTT over the baseline model (Maskformer) improves performance.
 - But it is adds more computational cost.
 - This is still lower than fancier segmentation architectures.

- Any broader insights we could take away?

The notion of Direct Memory Access

Arch	Spatial	Depth	D.A.
CNN[18]/Trans.[19]	√	×	×
Universal Transf.[20]	√	√	×
LQN (Ours)	\checkmark	\checkmark	\checkmark

Table 1: Comparison of existing nets by weight sharing across spatial-inputs, depth and the nature of computation. D.A: Direct memory access[21], i.e. the ability to access layers at any depth in a constant amount of time, without calculating previous layers.

- Any broader insights we could take away?

The notion of Direct Memory Access

Arch	Spatial	Depth	D.A.
CNN[18]/Trans.[19]	√	×	×
Universal Transf.[20]	√	√	×
LQN (Ours)	✓	✓	✓

Table 1: Comparison of existing nets by weight sharing across spatial-inputs, depth and the nature of computation. D.A: Direct memory access[21], i.e. the ability to access layers at any depth in a constant amount of time, without calculating previous layers.

- Any broader insights we could take away?

The notion of Direct Memory Access

Arch	Spatial	Depth	D.A.
CNN[18]/Trans.[19]	√	×	×
Universal Transf.[20]	✓	✓	×
LQN (Ours)	√	\checkmark	\checkmark

Table 1: Comparison of existing nets by weight sharing across spatial-inputs, depth and the nature of computation. D.A: Direct memory access[21], i.e. the ability to access layers at any depth in a constant amount of time, without calculating previous layers.

- Neural net can decide its own depth.
- It could "unroll" depth, and pause processing when done (early exit).
 - In LQN, it will just query what is at a particular depth, and directly get the answer.

What our community has done till now

Vit base12 blocks

Vit huge32 blocks

Each network has separate weights.

- Suppose you trained this network to predict upto 12 layers
- You could query it from layer 13... 24 onwards.
- Will it generalize to layers it has never been trained for?
- How well it would perform?

Figure 1: LQN generalizes to layers which were not seen during training: LQN trained on 20 layers of VIT-L for semantic segmentation on ADE20K demonstrates increasing performance as features are queried from the the last 4 layers.

Figure 1: LQN generalizes to layers which were not seen during training: LQN trained on 20 layers of VIT-L for semantic segmentation on ADE20K demonstrates increasing performance as features are queried from the the last 4 layers.

Figure 1: LQN generalizes to layers which were not seen during training: LQN trained on 20 layers of VIT-L for semantic segmentation on ADE20K demonstrates increasing performance as features are queried from the the last 4 layers.

Figure 1: LQN generalizes to layers which were not seen during training: LQN trained on 20 layers of VIT-L for semantic segmentation on ADE20K demonstrates increasing performance as features are queried from the the last 4 layers.

How can one generalize across depths?

- Its not surprising.
 - Transformers can generalize to sequence lengths not seen during training.
- LQN's insight: Depth is also an additional spatial dimensions
 - So you can generalize to depths not seen during training.

Sequential Decoding vs O(1) decoding

Figure 3: **LQN's feature analysis (Top Row):** t-SNE visualization of intermediate features as one traverses different layers of a teacher (eg. DinoV2[32]). Sequential processing here takes O(L), where L is the layer depth. (**Middle Row):** Predicted features from LQN (ours). Layer-based querying yields any layer's features in constant time irrespective of layer depth. (**Bottom Row):** L_2 error map between two feature maps. As we go deeper, the error decreases.

Sequential Decoding vs O(1) decoding

Figure 3: **LQN's feature analysis (Top Row):** t-SNE visualization of intermediate features as one traverses different layers of a teacher (eg. DinoV2[32]). Sequential processing here takes O(L), where L is the layer depth. (**Middle Row):** Predicted features from LQN (ours). Layer-based querying yields any layer's features in constant time irrespective of layer depth. (**Bottom Row):** L_2 error map between two feature maps. As we go deeper, the error decreases.

Sequential Decoding vs O(1) decoding

Figure 3: **LQN's feature analysis (Top Row):** t-SNE visualization of intermediate features as one traverses different layers of a teacher (eg. DinoV2[32]). Sequential processing here takes O(L), where L is the layer depth. (**Middle Row):** Predicted features from LQN (ours). Layer-based querying yields any layer's features in constant time irrespective of layer depth. (**Bottom Row):** L_2 error map between two feature maps. As we go deeper, the error decreases.

Constant Time Inference

Figure 4: GFlops as a function of layer depth in a transformer-based model like ViT-B/16, vs LQN.

- Deep Learning as we know it involves stacking blocks over one another
- Another way is to query the feature at particular depth and directly ask for it.
 - No need of layer stacking.
- It might help make deep learning faster.

Thank You

Takeaway: Depth can be "queried" instead of stacking-blocks.

