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Where | am in the process
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Reviewers liked idea, concerns on clarity

- My writing was not clear, could be better.

- Too vague, and ambitious in some places.
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Resubmitting toned down version to AAAI Phase 1-> ICLR.
Any Feedback greatly welcome :-)



- Classically:
- Neural nets are trained on a dataset.
- Weights are kept fixed during deployment.
- Test Time Training (TTT)
- Train the network even during testing.
- Can we learn on a single sample?

- First, i will describe what is TTT
- And then go into problem statement



Clarifying Experimental Setup

- A brief overlook at TEST TIME TRAINING setup.
- Originally, introduced by Yu Sun & Alexei Efros (Berkeley)

https://yueatsprograms.github.io/ttt/home.html



TEST-TIME-TRAINING SETUP
(TRAINING PHASE)

Classification
T . . A
Backbone Downstream Head

- Done on Train set.
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TEST-TIME-TRAINING SETUP
(TESTING PHASE)

Classification
—

X — Segmentation
.

Downstream Head
- The Downstream Head never sees Test-labels.

- X' is inference without any test labels.

- The claim is that x’ (features with TTT) are better
than x. So better downstream performance.



PROBLEM STATEMENT

- Suppose you want to distill all features a
of teacher. All the layers. X

- M1: Student architecture = Teacher.
(Fwd pass slow, since teacher = VIT) Teacher

- M2: Distill only last layer. (Cant use
intermediate feature representations)

K - How istill all lavers with .
running into computational &
bottlenecks.

Student

- Chicken and egg problem.
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Some important questions
we could ask ourselves

How does TTT help on classification

What happens on Distribution Shifted datasets.

- For eg, can the network adapt when it sees samples
corrupted by variety of noises,

On segmentation:

- Can TTT show better qualitative results/quantitative
numbers

Are there any broader insights we could take away?



TTT on classification

Table 2: LQN’s Robustness to Natural Distribution Shifts. CoOp and CoCoOp are tuned on
ImageNet using 16-shot training data per category. Baseline CLIP, prompt ensemble, TPT, APM and
LQN do not require training data. A v in P means that method leveraged pre-trained weights on
clean variant of train set aka, Image-net and downstream-ttt on corrupted version.

ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch

Method Topl acc. T Topl acc. T  Topl acc. T  Topl acc. 1 Top1 acc. 1 Average  OOD Average
CLIP-ViT-B/16(t) 66.7 47.8 60.8 73.9 46.0 59.1 57.2
Ensemble 68.3 49.8 61.8 77.6 48.2 61.2 59.4
TPT 68.9 54.7 63.4 77.0 47.9 62.4 60.8
APM 68.1 52.1 67.2 76.5 49.3 62.6 61.2
LQN (Two-Word) (Ours) 68.7 53.2 67.8 77.1 50.1 63.4 61.8
LQN (3DLoc-Binded) (Ours) 69.4 54.5 68.5 78.0 51.0 64.3 62.7
CoOp 71.5 49.7 64.2 75.2 479 61.7 59.2
CoCoOp 71.0 50.6 64.0 76.1 48.7 62.1 59.9
TPT + CoOp 73.6 579 66.8 77.2 49.2 64.9 62.8
TPT + CoCoO 71.0 58.4 64.8 78.6 48.4 64.3 62.6

X X X X [ X% X XMW XIN NN X X X X X X

CLIP VITL/14(t) 76.2

APM TT3 TT8 728 871 622 W) T34
LQN (Two-Word) (Ours) 77.9 73.0 73.6 88.2 63.0 75.1 74.3
LQN (3DLoc-Binded) (Ours) 78.6 74.2 74.3 89.1 64.1 76.1 75.3
OpenCLIP-VIT-H/14(t) 81.6 79.1 80.7 92.9 72.8 81.4 81.3
APM 84.6 84.2 83.9 94.9 77.1 84.9 85.0
LQN (Two-Word) (Ours) 85.2 85.0 84.7 95.5 78.0 85.7 85.7
LQN 3DLoc-Binded (Ours) 86.0 86.1 85.3 96.2 79.0 86.5 86.6
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LQN do not require training data. A v in P means that method leveraged pre-trained weights on
clean variant of train set aka, Image-net and downstream-ttt on corrupted version.
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CLIP-ViT-B/16(t) X 66.7 47.8 60.8 73.9 46.0 59.1 57.2
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TPT X 68.9 54.7 63.4 77.0 47.9 62.4 60.8
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CoOp v 71.5 49.7 64.2 75.2 47.9 61.7 59.2
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TTT on classification

Table 2: LQN’s Robustness to Natural Distribution Shifts. CoOp and CoCoOp are tuned on
ImageNet using 16-shot training data per category. Baseline CLIP, prompt ensemble, TPT, APM and
LQN do not require training data. A v in P means that method leveraged pre-trained weights on
clean variant of train set aka, Image-net and downstream-ttt on corrupted version.

ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch

Method Topl acc. T Topl acc. T  Topl acc. T  Topl acc. 1 Top1 acc. 1 Average  OOD Average
CLIP-ViT-B/16(t) X 66.7 47.8 60.8 73.9 46.0 59.1 57.2
Ensemble X 68.3 49.8 61.8 77.6 48.2 61.2 59.4
TPT X 68.9 54.7 63.4 77.0 47.9 62.4 60.8
APM X 68.1 52.1 67.2 76.5 49.3 62.6 61.2
LQN (Two-Word) (Ours) X 68.7 53.2 67.8 77.1 50.1 63.4 61.8
LQN (3DLoc-Binded) (Ours) X 69.4 54.5 68.5 78.0 51.0 64.3 62.7
CoOp v 71.5 49.7 64.2 75.2 47.9 61.7 59.2
CoCoOp v 71.0 50.6 64.0 76.1 48.7 62.1 59.9
TPT + CoOp v 73.6 57.9 66.8 77.2 49.2 64.9 62.8
TPT + CoCoOp v 71.0 58.4 64.8 78.6 48.4 64.3 62.6
CLIP VIT-L/14(t) X 76.2 69.6 72.1 85.9 58.8 72.5 71.6
APM X 77.3 71.8 72.8 87.1 62.2 74.2 73.4
LQN (Two-Word) (Ours) X 77.9 73.0 73.6 88.2 63.0 75.1 74.3
LQN (3DLoc-Binded) (Ours) X 78.6 74.2 74.3 89.1 64.1 76.1 75.3
OpenCLIP-VIT-H/14(t) X 81.6 79.1 80.7 92.9 72.8 81.4 81.3
APM X 34.6 34.2 33.9 94.9 77.1 34.9 35.0
LQN (Two-Word) (Ours) X 85.2 85.0 84.7 95.5 78.0 85.7 85.7
LQN 3DLoc-Binded (Ours) X 86.0 86.1 85.3 96.2 79.0 86.5 86.6
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Table 2: LQN’s Robustness to Natural Distribution Shifts. CoOp and CoCoOp are tuned on
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LQN do not require training data. A v in P means that method leveraged pre-trained weights on
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TPT X 68.9 54.7 63.4 77.0 47.9 62.4 60.8
APM X 68.1 52.1 67.2 76.5 49.3 62.6 61.2
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LQN (3DLoc-Binded) (Ours) X 69.4 54.5 68.5 78.0 51.0 64.3 62.7
CoOp v 71.5 49.7 64.2 75.2 47.9 61.7 59.2
CoCoOp v 71.0 50.6 64.0 76.1 48.7 62.1 59.9
TPT + CoOp v 73.6 57.9 66.8 77.2 49.2 64.9 62.8
TPT + CoCoOp v 71.0 58.4 64.8 78.6 48.4 64.3 62.6
CLIP VIT-L/14(t) X 76.2 69.6 72.1 85.9 58.8 72.5 71.6
APM X 77.3 71.8 72.8 87.1 62.2 74.2 73.4
LQN (Two-Word) (Ours) X 77.9 73.0 73.6 88.2 63.0 75.1 74.3
LQN (3DLoc-Binded) (Ours) X 78.6 74.2 74.3 89.1 64.1 76.1 75.3
OpenCLIP-VIT-H/14(t) X 81.6 79.1 80.7 92.9 72.8 81.4 81.3
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LON (Two-Word) (Ours) X 85.2 85.0 84.7 95.5 78.0 85.7 85.7
LQN 3DLoc-Binded (Ours) X 86.0 86.1 85.3 96.2 79.0 86.5 86.6




TTT for semantic segmentation

Table 6: LQN for semantic segmentation. TOn ADE20K, these models resize the shortest side of
images to the indicated scale during inference, while preserving the aspect ratio. *Re-implementation
by EOMT. ViT-Adapter + Mask2Former and EoMT use windowed inference, dividing each image
into multiple crops. DA is Depth Anything [42]. Methods marked with 8 use TTT. LQN obtains
higher performance than Mask2former+ VIT-Adapter-L with lower GFlops.

Cityscapes val [? ] ADE20K val [26]

Method Backbone Pre-training Params

Input size  GFLOPs mloU Input size GFLOPs mloU
Mask2Former' [33]  Swin-L [34] IN21K 216M 1024 x 2048 - 83.3 6402 - 56.1
MaskDINO' [39] Swin-L [34] IN2IK  223M - - - 6402 - 56.6
OneFormer! [37] ConvNext-XL [36] IN21K 373M 1024 x 2048 775 83.6 6402 607 57.4
OneFormer! [37] DiNAT-L [38] IN21K 223M 1024 x 2048 450 83.1 8962 678  58.1
kMaX-DeepLab [35]  ConvNext-L [36] IN21K 232M 1025 x 2049 1673 83.5 - - -
Mask2Former [33] ViT-L [17] DINOV2+DA - 896 x 1792 - 84.8 8962 - 59.4
Mask2Former* [33]  ViT-Adapter-L* [40] DINOv2  351M 10242 5200 845 5122 910 58.9
EoMT(t) ViT-L [17] DINOv2  319M 1024° 4350 842 512° 721 58.4
APMS MLP [41] DINOv2  350M 10242 4540 85.1 5122 911 58.8

LQN-3DBinded(Ours)® MLP [41] DINOv2  350M 10242 4490 85.7 5122 861  61.2
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Table 6: LQN for semantic segmentation. TOn ADE20K, these models resize the shortest side of
images to the indicated scale during inference, while preserving the aspect ratio. *Re-implementation
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Table 6: LQN for semantic segmentation. TOn ADE20K, these models resize the shortest side of
images to the indicated scale during inference, while preserving the aspect ratio. *Re-implementation
by EOMT. ViT-Adapter + Mask2Former and EoMT use windowed inference, dividing each image
into multiple crops. DA is Depth Anything [42]. Methods marked with 8 use TTT. LQN obtains
higher performance than Mask2former+ VIT-Adapter-L with lower GFlops.

Cityscapes val [? ] ADE20K val [26]

Method Backbone Pre-training Params

Input size  GFLOPs mloU Input size GFLOPs mloU
Mask2Former ! [33] Swin-L [34] IN21K 216M 1024 x 2048 - 83.3 6402 - 56.1
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kMaX-DeepLab [35] ConvNext-L [36] IN21K 232M 1025 x 2049 1673 83.5 - - -
Mask2Former [33] ViT-L [17] DINOv2 + DA - 896 x 1792 - 84.8 8962 - 59.4
Mask2Former* [33] ViT—Adapter—Li [40] DINOv2 351M 10242 5200 84.5 5122 910 58.9
EoMT(t) ViT-L [17] DINOv2 319M 10242 4350 842 5122 721  58.4
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TTT for semantic segmentation

- TTT over the baseline model (Maskformer) improves performance.
- But it is adds more computational cost.
- This is still lower than fancier segmentation architectures.

LQN (Ours)




- Any broader insights we could take away?

The notion of Direct Memory Access

Arch Spatial | Depth | D.A.
- CNN[18]/Trans.[19] v X X

Universal Transf.[20] v v X

LQN (Ours) v v v

Table 1: Comparison of existing nets by weight sharing
across spatial-inputs, depth and the nature of computation.
D.A: Direct memory access[21], 1.e. the ability to access

layers at any depth 1n a constant amount of time, without
calculating previous layers.

Fal
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- Neural net can decide its own depth.
- It could “unroll” depth, and pause processing
when done (early exit).

- In LQN, it will just query what is at a particular
depth, and directly get the answer.



What our community has done till now

- Vit base - Vit large - Vit huge
12 blocks 24 blocks 32 blocks

Each network has separate weights.



Depth As an Interpolation Dimension

Layer Idx : - Output

Suppose you trained this network to predict upto 12
layers

You could query it from layer 13... 24 onwards.

Will it generalize to layers it has never been trained
for?

How well it would perform?



Depth As an Interpolation Dimension

621 ---- EOMT ViT-L @ Layer 20
-~ EoMT V!TL@ L ¢ 24 61.2%
—&— LQN (TTT) @ Layer 24
© 601 —#— LQN (TTT) @ Layer 20
20 21 22 23 24 25

Layer ID
Figure 1: LQN generalizes to layers which were not
seen during training: LQN trained on 20 layers of VIT-
L for semantic segmentation on ADE20K demonstrates
increasing performance as features are queried from the
the last 4 layers.
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the last 4 layers.
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increasing performance as features are queried from the
the last 4 layers.



How can one generalize across depths?

- |ts not surprising.
- Transformers can generalize to sequence lengths
not seen during training.
- LQN’s insight: Depth is also an additional spatial
dimensions
- So you can generalize to depths not seen during
training.



Sequential Decoding vs O(1) decoding
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Figure 3: LQN’s feature analysis (Top Row): t-SNE visualization of intermediate features as one
traverses different layers of a teacher (eg. DinoV2[32]). Sequential processing here takes O(L), where
L is the layer depth. (Middle Row): Predicted features from LQN (ours). Layer-based querying
yields any layer’s features in constant time irrespective of layer depth. (Bottom Row): L, error map
between two feature maps. As we go deeper, the error decreases.
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between two feature maps. As we go deeper, the error decreases.
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Constant Time Inference
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Figure 4: GFlops as a function of layer
depth 1n a transformer-based model like ViT-
B/ 116, VS LQN.1



- Deep Learning as we know it involves stacking blocks over one

another

- Another way is to query the feature at particular depth and
directly ask for it.
- No need of layer stacking.

- It might help make deep learning faster.



Thank You

Takeaway: Depth can be “queried” instead of stacking-blocks.
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