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Decades of Debate
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The Rise of Neural Networks
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LLMs become IMO gold medalists...

NeurOsymbOllC Pure Neural NEWS | 24 July 2025

— — DeepMind and OpenAl models solve
mathematis mathematic maths problems at level of top
students

For the first time, large language models performed on a par with gold medallists in the

A 4

International Mathematical Olympiad.

Buippequig usyol

AlphaProof & Advanced Gemini
AlphaGeometry with Deep Think
Google DeepMind .+ @GoogleDeepMind - Jul 21 (oo
An advanced version of Gemini with Deep Think has officially achieved
gold medal-level performance at the International Mathematical Olympiad.
m 1
3 U
3 2 It solved [} out of [ exceptionally difficult problems, involving algebra,
5 S combinatorics, geometry and number theory. Here’s how B
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Q
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> > o > % = > al » I » 1 > > P o ‘@ Demis Hassabis £ @demishassabis - Jul 21 (4 oo
) == Y ) é Y ) o Official results are in - Gemini achieved gold-medal level in the
3 S § 3 3 3 g International Mathematical Olympiad! - An advanced version was able to
Q solve 5 out of 6 problems. Incredible progress - huge congrats to @/mthang
and the team!




Why Still Symbolism?

* Reliability

Examples:

* Computation is exact, precise and generalizable  |F fever AND sore throat THEN possible infection

* Reasoning trace and decision logic are IF infection AND high white blood cell count THEN bacterial
transparent. infection

[F bacterial infection AND ear pain THEN ear infection

e Efficiency

* No need of billions of parameters

* Applying logical rules is fast.

e Compositionality sun opg "
* Given two sets of rules, they can be combined w :

v 7 7




The “Unreasonable” Success of LLMs

* Reasoning needs symbolic structures.

* Each step is deterministic & e
programmatic

* Each step is subject to logical rules

* LLMs are just trained still with finite data
using statistical pattern matching objective:

g N
function multiply (x[l..p], v[1l..9]):
// multiply x for each y[i]
for i = g to 1l @ @ @
carry = 0 A(x) for o
or = o

= o ®.0
B lOg p(x ‘ x o0 X summands[i] = digits @
v/ % —_ )
x Z t 1 t 1 // add partial results (computation not shown)
product = Eg=l summands [g+1-1i] - 10i-1 :
l . D G @) G (o)
{ | return product A(X)J legend: \_ 1-digit carry mod 10 sum concat




The “Unreasonable” Success of LLMs

* Reasoning needs symbolic structures.

* Each step is deterministic & e
programmatic

* Each step is subject to logical rules

* LLMs are just trained still with finite g=—
using statistical pattern matching g N\
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Induction Head

Search previous example of [A] in

the context: .
Induction Head

If not found:

Attend to the [START] token /\
Y

If found: A B

[Look at the next token [B] in
previous case

Copy [B] to predict the next
token



Circuits in Two-Layer Transformers

* How induction head is implemented in a two-layer transformer:s

attention pattern moves information

out about the Potters. Mrs Potter was ... neighbours would say if the P;, arrived in

logit effect

. Mrs Potter was ... neighbours would say if the Potters arrived in

L ayer ) out about the Pot

key query
out about the ters. Mrs Potter was ... neighbours would say if the ters arrived in

attention pattern moves information logit effect

Mr and Mrs Dursley, of number ... with such nonsense. Mr l;,ley was the

Mr and Mrs D@iiSlley, of number ... with such nonsense. Mr Dursley was the

Layer 1 key query
Mr and MrsfBlursley, of number ... with such nonsense. ursley was the




Simplistic Reasoning Task

* Can neural network learn to perform arithmetics?

* The input are two integers n, m € [N], we train a neural network that predicts
(n +m) mod N.

im
We >
.
>
N o —> W(l) \ e e’
P

Gromov, Grokking modular arithmetic



Circuits that perform modular addition

* There exists an analytical solution that achieves 100% accuracy.

(1) — k (1) (1) — k (2) (2) — _ k(3
Wum = COS (27rpn + @, ) Wz,kn = COS (Zﬂpn + @, ) qu = COS ( 27zpq @, )

« wherek e [N],ne |0,p—-1],9 € [p], and gplgl), (plgz), (p]?) are random sampled from a uniform
distribution.

N
=
)
W
Qo
o,
=
\——  ——



Circuits that perform modular addition

* Let’s verify step by step :)

* First layer pre-activation:

(1) — k (1) k (2)
hk (n,m) = cos (ann + @, ) + COS <2ﬂpm + @, )

* First layer after activation:

2
(1) _ L3 (1) L3 (2)
g, (n,m) = (cos <2ﬂpn + ¢, ) + cos (Zﬂpm + ¢, ))



Circuits that perform modular addition

* Second layer outputs:
N

1 k
WP (nm) = Y, cos (27r (2n— ) + 20" - ¢,§3>> + cos <27r;(2n +q)+ 290 + ¢,§3>)
k=1
LS (2) 3) (2) (3)
+Z COS (27z (Zm—q)+2¢" — @, ) + cos ( (2m +q9) +2¢07 + ¢ )
= _— R = ﬂ
;1 +l 2 COS (27: (n+m-—gq)+ golil) + @ (2) — @ 3)> { A ]
| . 1 2) _ (3 \
=1 '+ Let co,f )+ ¢,§ ' =g, ) |
N |
_|_% Z COS (2,,%(” +m+q) + ¢]§1) + (2) n %53)) | * This term becomes:
x LS cos (2nkn 4 m— ) = Yotn 4 m—g
1 . = cos(n—n m—q>=— n+m-—gq
+5 Z COS <2n;(n —m—q)+ 60,51) - 60,?) 3)) ‘ R g 2 |
k=1 | |
| N ) . [t equalsto1onlywhenn+m —g=0 mod p \‘
+— ) cos (2%—(11 —m+q)+ qo(l) 2) + q0(3)) | ‘
2 I; p i‘ * Other terms diminish < N i
N . | ,:
+ ) cos (27:;61 + gaf)) — —— e



More recent observations...

Expressivity

out

Wy
Wo
'
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The OV (“output-value”)
circuit determines how
attending to a given
token affects the logits.

There exists weight
WuWoWyWg

configurations (i.e., circuits)
that can represent exact

The QK (“query-key”)
circuit controls which

Training models over
different tasks can emerge
generalization on
compositional tasks

e e algorithmic task
Compositionality

Composite
Task

Atomic Task 3

Atomic Task 1 Atomic Task 2

Interpretabilit
y P
i.d. test 0.0.d. train 0.0.d. test 100 a‘
. <
—
-60 50
-40 :
-
@™
23 24 25 26 27 8 29 23 24 25 26 27 24 25 Q-)
# of pre-training tasks (nj. q.) # of pre-training tasks (n d) #of pre- tramlng tasks (n d) D_

A B
Q.
40 60 80 100 120 o 20 40 60 B0 100 120 :
. _
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C (original) (original) ;
C.
—
5.
—
Sub Mul Div
(reordered) (reordered)

Visualized feature maps match constructed
patterns in weight space for exact computation.

He et al., Learning to grok: Emergence of in-context learning and skill composition in modular arithmetic tasks



Stereotypical Dichotomy

. Connectionism Connectionism
Symbolism s
(In the past) & (But now) &

X

* Rule-based: Reliable
reasoning through

programmatic steps.

* Compositionality: Train
from partial solutions, and

compose freely to form
generic solutions.

* Trainability: Fast and x

stable convergence

X




Open Questions to Answer

* What are “symbols” represented within neural networks?

* Are there explicit/implicit symbolic-like structures in neural networks?
* If so, can gradient descent discover symbolic structures?

* When and how gradient descent performs regression over these “symbols”?
* Furthermore, how does symbolic structures reshape the weight space?

* Abstraction <=> Compression

* Symbolism <=> Low-dimensionalism



Learning to Perform Addition

“ 4

* Given a finite Abelian group (A, - ) with commutative group action
» Suppose A = {qay, -*-,a,} has cardinalityn = [A|.

e @ Goal: Training a two-layer neural network that takes inputs a;, a, € A and
outputs a, - a, with gradient descent.

) _I_>.\
%% —

a, —I—> A /

(‘v ‘p)o




Neural Architecture

* Neural Architecture
* One-hot embeddings to encode I
ay ¥

group elements: a; — e;

* Two layers and weight matrices:
W, W,, W with g hidden neurons.

4 —1n
» Quadratic activation: o(x) = x?

.
o(a,a,) = Zw 0( Woi€q, T Wpi€ a2>

(‘D° I19)0



.oss Formulation

We concatenate each row of weight matrices together as

Zj X [Wa,t,j’ Wb,:,j’ Wc,:,j] fOl‘j S [Q]

We assume infinitely wide neural networks g — 0.

Training Objective: Mean squared loss over all pairs of (a;, a,).

2
1
H = Z P+ (%0(%’ a,) — eal,a2> q
a;,a,EA
P+ =1——11"is the centering matrix.
4] n

Optimization. Gradient descent or gradient flow

de

— =—-V_H.

dt I



From Infinite-Width Neural Nets to Distribution

* When g — o0, we show that the neural networks can be represented with a

distribution u

{Zj}qe[n]

q — &
— @)

q —

H({zZ} gepn) — H[ul

Few Samples ~ More Samples ~ Many Samples
L

= =]

Few Samples ~ More Samples  Many Samples

Distribution

Distribution

[llustrated by NanoBanana



Monomial Potential

 Our results show that the loss H[ ] over
neuron population can be written as:

Hlul = L(p, (1), ---p, (1))

for some function L : R" —» R.

* And p,[u] is defined as the monomial
potential

Avg. Pool

pu) =k, [r2)] = [r(z)dﬂ(z)

w.r.t. monomial 7(z) = H zl.ki where .7, is an

ie.s,
index set.



Monomial Potentials are Symbols

» Symbols. There exists a binary
assignment of py, -+, p. such that the H=0

loss equals to zero: H[u] = 0.

» Exact computation and perfect __—
generalization. P
W,

* Dy, e+, P, being binary resembles
boolean variables in symbolic
reasoning.

p1 =1 pr=10

_—\
Wa

WC




Compositional Structure of Monomial Potentials

 Compositionality. Neural networks are
compositional in MP space.

* Neural space Algebra
e 4+ Addition: Stacking two neural networks

e X Multiplication: (Kronecker/Hadarmard) product
of weight matrices of two neural networks.

* Neuron space operation Ld logical expression.

e +Addition between neural nets d “OR” between
MPs: p, (1) + 1y) = p,(uy) + p(1)

o X Multiplication between neural nets td “AND”
between MPs: p, (11 * p) = p, (1) * p, (1)

prisc

= |
L)
. LA
(N
r {) ]
9.
w, \ ~
Y
J

Thm. 1

Pr :; .

Thm. 1

Pr ..

stack

Pr

Def. 1

OR Pr o =

Def. 1

Pr

couple

AND py |2 o =

Thm. 1

Thm. 1



Takeaway |
Symbolic Structures are Hidden in Neural Weights

Monomial potentials are machine symbols, inheriting key properties that allows for
exact computation and generalization.

1.

4.

&) Symbolic Variables. Monomial potentials encapsulate neural weights as
symbolic variables.

# Logical Connectives. Loss function can be re-written as expressions
over monomial potentials.

< Compositionality. Weight space algebra manifests as composing MP-
representing symbols via AND/OR logics.

7 Machine’s symbol are not necessarily human-interpretable symbols?



Gradient Descent => Symbolic Regression

* Gradient descent becomes Symbolic
: regression
regression on MP space.

* The learning process obeys a
unique symmetry regarding

orthogonal group. prlko)

* When the neurons are rotated by
Rst.RR' = [, thenits gradients

Neural weights
are rotated by the same R. training Gradient descent over
* It forces MPs to converge to 0/1 MEASUres
solutions. ahy =VVH
dt .

O(d)-equivariant



MP Space

Dimension Reduction

* The weight space will go through a dimension
reduction process.

* The entropy-minimizing measure satisfying
boolean MP assignments form a Riemannian

manifold of dimension at most 7 - the number
of MPs.

* Evidence for weight space regularizations (e.g.,
weight decay)

* The number of involving MPs governs the intrinsic
dimension even when the hidden dimension is
going to infinity.

e Evidence for low-rank weights (e.g. LORA)

Weight Space



Takeaway I
GD Finds Symbolic Solutions under Geometric Constraints

Gradient descent based training manifests as low-dimensional symbolic
regression on MPs.

1. @& Neural network training can reveal a symbolic learning process at the
MP level.

2. "\ The neural weight space will go through a dimension reduction
process.

3. [ Geometric constraints are essential for discovering symbolic
structures.



Formal Results




Learning to Perform Modular Addition

“ 4

* Given a finite Abelian group (A, - ) with commutative group action
» Suppose A = {qay, -*-,a,} has cardinalityn = [A|.

e @ Goal: Training a two-layer neural network that takes inputs a;, a, € A and
outputs a, - a, with gradient descent.

) _I_>.\
%% —

a, —I—> A /

(‘v ‘p)o




Neural Architecture

* Neural Architecture
* One-hot embeddings to encode I
ay ¥

group elements: a; — e;

* Two layers and weight matrices:
W, W,, W with g hidden neurons.

4 —1n
» Quadratic activation: o(x) = x?

.
o(a,a,) = Zw 0( Woi€q, T Wpi€ a2>

(‘D° I19)0



.oss Formulation

Represent weights in the Fourier space (F, is the k-th Fourier basis):

Waj = Z Zakitlo  Wpj = Z Zpkil ko ,  VjE€lql
k#0 k#0

Flatten coefhicients for each neuron: z; = [ ..., 25 Zpris Zekio - - - Jo<ikan € R

Training Objective: Mean squared loss over all pairs of (a;, a,).

1
Mg = 3 | P (gpotea—a)

a,a,EA

P+ =1——11"is the centering matrix.
n

d{z;}
Optimization. Gradient descent or gradient flow dt] = — VH{z;}ic(4))-




Loss Decomposition

n—1
Proposition. The loss function H can be reformulated as: H = 1 Z £ ,
n—1:= n
2 2
1 1
2
Ok = = 2P+ Z ‘pklkzk‘ T n Z Z Ppi,—kk| T 1 Z Z Z Pp. k', m—k'k
ki ke pelab} K m#0 pela,b} | K
1 1
Pladak =" 2 Gk fokicks Pk = q 2 Sk ek
J J

* Key Observations

1. His expanded as a function solely dependent on the empirical measure ;¢ = Z 5Zj
JElq]

2. H depends on ;9 through averaging on a subset of monomials: 7 — HZZ' for some index set 7.
IES

Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets



Formulating Reasoning: Beyond Group Addition

n

« Consider a parameter space M € [
* n = 3din the Abelian group example.

+ Analyze the limiting measure: 49 — u, wheng —

* Generalize average over monomials to Monomial Potentials (MPs).

Definition. A monomial potential MP) p. : P.(M) — R is defined as the expectation
of the specified monomial r against the input measure u:

pu) =k, [r2)] = JV(Z)dﬂ(Z)




Formulating Reasoning: Beyond Group Addition

» Specify a set of monomials % = {ry, -+, r, } associated with the task.

» Generalize loss function H [{zj}] to loss functional over measure u:

for some function L : R — R.

 Optimization over measures.

oH
at//tt — Vz . </’ttvz (_[//tt]>>
O

. . |
Intuition: y,, . ~ argmin,, pon V() + o Wo(u,, 1) }-
[




Summary of Generalization

Motivating Example Generalization
(@) — Z 5 .
H 2 An arbitrary measure u € P.(M)
JElq]

Pk koo Pk ok ) MPs: p,(u) = E__ [r(2)],r € R

H({Z] }]E[Q]) H[//t] — L(prl(//t), ”.prm(//t))
d{z:}

d; = — VH({ZJ}) at/’tt — Vz (/’ttvz<5_[/’tt]>)



Continuous Optimization as Boolean Satisfaction

. Revisiting: H = Z i/ n—=1)+m—-1)/n.

k0 , ,
1 1
2
Cr = = 2P + Z \Pklkzk\ T n Z Z Ppi,—kk| T 4 Z Z Z Pp.k’,m—k'k
ky.k pelab} K m#0 p€la,b} | K

* A minimizer can be identified:
Pk = Uk Z0)s prix =0, Poix =0, Vp €1a,b},ky, ky, k € [d]
* Key Observations:

* Modular addition can be solved by finding u that satisfies a binary assignment at the level of
MPs.

 MPs plays a role similar to boolean variables and L resembles a logical expression.



Generalization Beyond Group Addition

Definition. Suppose a measure y € P.(M) has o-set £, C &% and 1-set £, C A&, (or

equivalently o/1-set (£, %)), then p(u) = 0 for every r € £yand p,(u) = 1 for every
reR,.

* 0o/1-sets test satisfiability of each MP for the measure p.
e The solutions to Abelian group reasoning has o-set .U £, U £, and 1-set X %
* R, =" wxlkis ky, knotall equalj
© Ry = Tpp kil
* R = Iy pmiilm# 0}
* R, = {rxlk # 0}



Symbolism over Statistical Measures

Definition 1. For two measures y; and p,, define:

* (1) addition as: u, = p; + u, such that u,(A) = pu(A) + u,(A) for every
measurable A C M;

 (2) multiplication as: u« = p; * u, such that . is the measure of
Z« = 71 © 2o where z; ~ Uy, 2, ~ Wy, © denotes element-wise multiplication;

* (3) the identity element as 0y , i.e., the point mass at the d-dimensional all-
one vector;

* (4) the zero element as the zero measure.



Algebra of Measures and MPs

stack
e Theorem1. (P.(M), +,* ) is a commutative semi- ,_ AN N t D,
ring. Every MP p (p) is a ring homomorphism: " JDetd
Thm. 1 Thm. 1
* ) p(py + pp) = ppy) + pHy)
* (2) pr(lul lu2) — pr(/’tl) pr(//tZ)
 Neuron space operation k4 logical expression.
Def. 1
e +Addition between measures Ld “OR” between  pr|- 0 o x: ¢ . Pr
MP S. couple

Thm. 1

e X Multiplication between measures &3 “AND” e
between MPs. Pr ° . AND py (0o =



Compositionality of Neural Solutions

 Partial solutions can be composed to generate general solutions!
1. Find special solutions satisfying subsets of constraints &£, ---, %,

2. Use union/intersection to combine £, ---, &, to satisfy the target o/1 sets.

3. Construct global minimizers by mapping logical language to neural weights
Examples. If 4, has o/1-sets (%), %) and u, has o/1-sets (&, &), then:

1. Uy * pyhasofi-sets (ByU Sy, £ NS));

2. My + U haso/i-sets (ByN Sy, (LB NSy) U(KyNS));

3. If u, is a global optimizer and p, has 1-set & (the entire set of MPs), then y; * u,
is a global optimizer.



However

|
| Neural Network Trainmg N ‘.‘ Symbohc Regression l

— —

|

| Finding binary assignment of MPs:

y

| a
| Finding ¢ minimizing the population risk:
n‘ Prik = Uk #0),  prii =0 i

ppklkzk — O Vp - {Cl b} kl’ kz, k - [d] f

i

K — . —
u* = arg min abazf (0(611,612), eal,az)

= ——— e —

e The gradient-based training may still learn u that achieves non-binary MPs, e.g.

Z pkkk — O Whlle pkkk # () for CvVery k # O
k#0

? Open Questions

Can neural network training discover “symbolic” solution?



When “GD on 1” = “GD on MPs™?

* Theorem 2. Consider a trajectory of measure {4, } o governed by Wasserstein gradient flow
oH -
o, =V, - (,ut V., (5—[,%]) ) . Assume that:
M
1. Ho = N(0,1) at the initialization;
2. degr > 3 and is odd for every r € &£;

oH o OH oH
3. Vé—[,ut] is O(d)-equivariant: Vé—[,ut](Rx) = R Vé—[//tt](x) for every R € O(d).
I H H

* Then each monomial potential is optimized coordinate-wisely as:
0,0, (1) = — C(1)d, L(p)

where C,(¢) > O is a time-dependent scalar function only dependent on Py



Neural Weight Training => Symbolic Regression

Symbolic
regression

Symbollec UMbolic Space

Objf‘ctive Function
0
b

O Smoothe

Discretize @

P, (1)

Data-driven
update

n /

Neural weights

training SH 6
Oty + V- | WV, a[ﬂt] =0

N— ——
O(d)-equivariant

Under geometric constraints (i.e., O(d)-equivariant velocity field), optimizing the
measure with WGF is equivalent to directly performing gradient descent on MPs.



Back to Modular Addition Example

~ Modular Addition Example

e Consider the MP p,,, for some k # 0, we can derive that = Loss
|

2
O = = 2pg Z | Proic |+

apkkkL X Pk — L. ko
* Then by the previous Theorem, we find that: | 2
B ; 1 Z pr,k’,—k’,k T
Epkkk(ﬂt) = CaaD(1 = prgaty)) petenl t
| 1
»U« ; Z 2 Z pr,k’,m—k’,k
| m#0 pela,b} k'
pkkk(/’tt) =1 — exp(— Ckkkt) : Boolean Solutions

* pu.(i,) = 1 converges to the binary results t

P = 1k # 0),




Symbolic / Dynamics in m-dimensional space
regression T “

PT

P, (1)

Neural weights

training SH
Oy + V- | 1V, a[ﬂt] =0

N— ——
O(d)-equivariant

Revisiting Dimensionality of Dynamics

Symbol!oc updm Symbolic Space

O Smoothe
Objective Function
Discretize @ i E
«?
Data-driven ‘
update
@)
» 0.

Dynamics in infinite-dimensional space



MP Space

Dimension Reduction

* Consider stationary points of MP dynamics (i.e., MP
assignments vanishing the gradient) ¢ € %" such that

VL(e) =0

* 11* realizes ¢ while minimizing differential entropy takes
the form:

=1

where /; is determined to let p,.[u*] = @, for every i € [m].

* This reduces the infinite-dimensional problem to a
Riemannian manifold of dimension at most ..

Measure Space



Recap: RG-Type Degree of Freedom

* Renormalization group theory studies the effective degree of freedom of the
system by analyzing the Jacobian matrix H = Df(x*) of the dynamical

X
system: — = f(x) at its fixed point x*.

dt

 Stable Manifold Theorem. The manifold M containing initial points x
which converge to fixed point x* is tangent to the sum of eigenspaces

associated with eigenvalues of H.
» dim M =# of negative eigenvalues in H

* As the dynamical system evolves, the effect of points in M are diminishing.
The remaining components are the actually effective ones.



Reduction on RG-Type Degree of Freedom

Theorem. Consider loss tunctional H[u] = L(p, (1), ---p,. (#)), suppose H is
displacement-convex, then all eigenfunctions corresponding to non-zero

eigenvalues of second variation [L(7) lie in a subspace spanned by the
monomial set £, i.e, v; C span(X) if 4. # 0.

The degree of freedom in RG sense is bounded by | £ | = m.

O rA>mw»>




RG-Type Degree of Freedom Reduction

e Moreover, if [ V°L], VL > 0, then L(¢) will have non-increasing eigenvalues:

dxl(t)<()
d =

An emergence of negative eigenvalues => A spontaneous reduction on RG-type
degree of freedom

* There will be finitely many 0 < ¢ <, < --- <t where an eigenvalue of L(7)
CrOSses Zero.

Finite-time reduction on degree of freedom.



Sample Complexity to Learn G-Invariance

OH
at/’tt + Vz ' /’ttvz _[//tt] = 0
OU

\—\.,~.J
O(d)-equivariant

Theorem. Suppose G is a Lie group and M, is a data manifold. Consider a family
of G-invariant functions &°(M ), square-integrable up to order s > 0 over M ,.

Denote d' = dim(M,/G) and let s = (1 + k)d'/2 for some positive integer k > 0.
Given 8 € (0,1], and a G-invariant function f* € &# HS(Md), then with probability
at least 1 — o0, empirical risk minimization can learn e-approximate G-invariant

function f with n many samples, where:
e n=0 (max {1/(|G| " **D) Tog(1/5)/e*}) for finite G.
e n=0 (max {vol(M,/G)/e" T+ 10g(1/8)/e*} ) for infinite G.



Sample Complexity to Learn G-Invariance

Remember G is the target group invariance (e.g., O(d)).

. 1= 0 (max {1/(] G| e!*1%+D), log(1/8)/€?} ) for finite G.
e n=0 (max {Vol(M,,/G)/e 100D, 10g(1/5)/€2}) for infinite G.

e If G is finite, group invariance reduces sample complexity by a factor of
1/1G|.

e [f G isinfinite, it reduces sample complexity by contracting the data column
through its orbits.



Summary of Results

We have shown:
 Algebraic structures are inherent in neural networks

» Continuous weight-space optimization can lead to solutions with symbolic
structures under geometric constraints.

* Low-dimensional representations is a natural result of symbolic abstraction,
enforced by information-, optimization-, and geometry-theoretic constraints.



Thanks for Listening!




