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The Rise of Neural Networks



LLMs become IMO gold medalists …
Neurosymbolic Pure Neural



Why Still Symbolism?
• Reliability


• Computation is exact, precise and generalizable


• Reasoning trace and decision logic are 
transparent.


• Efficiency


• No need of billions of parameters


• Applying logical rules is fast.


• Compositionality


• Given two sets of rules, they can be combined 
easily with AND/OR logics

Examples:


IF fever AND sore throat THEN possible infection


IF infection AND high white blood cell count THEN bacterial 
infection


IF bacterial infection AND ear pain THEN ear infection



The “Unreasonable” Success of LLMs
• Reasoning needs symbolic structures.


• Each step is deterministic & 
programmatic


• Each step is subject to logical rules


• LLMs are just trained still with finite data 
using statistical pattern matching objective:


𝔼x [∑
t

log p(xt |x1, ⋯, xt−1)]

7 x 49 343 

vs
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The “Unreasonable” Success of LLMs
• Reasoning needs symbolic structures.


• Each step is deterministic & 
programmatic


• Each step is subject to logical rules


• LLMs are just trained still with finite data 
using statistical pattern matching objective:


𝔼x [∑
t

log p(xt |x1, ⋯, xt−1)]
It looks like neural 

networks learn to truly 
perform logical & algorithmic 

reasoning?



Induction Head
Search previous example of [A] in 
the context:


If not found:


Attend to the [START] token


If found:


Look at the next token [B] in 
previous case


Copy [B] to predict the next 
token

A A B…B

Induction Head



Circuits in Two-Layer Transformers
• How induction head is implemented in a two-layer transformer:s

Layer 1

Layer 2



Simplistic Reasoning Task
• Can neural network learn to perform arithmetics?


• The input are two integers , we train a neural network that predicts 
.

n, m ∈ [N]
(n + m) mod N

Gromov, Grokking modular arithmetic
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Circuits that perform modular addition
• There exists an analytical solution that achieves 100% accuracy.


• where , , , and  are random sampled from a uniform 
distribution.  

k ∈ [N] n ∈ [0,p − 1] q ∈ [p] φ(1)
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Circuits that perform modular addition
• Let’s verify step by step :)


• First layer pre-activation:





• First layer after activation:


h(1)
k (n, m) = cos (2π k

p n + φ(1)
k ) + cos (2π k

p m + φ(2)
k )

z(1)
k (n, m) = (cos (2π k

p n + φ(1)
k ) + cos (2π k

p m + φ(2)
k ))

2



Circuits that perform modular addition
• Second layer outputs:


h(2)
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• Let 


• This term becomes: 





• It equals to 1 only when 


• Other terms diminish 
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k
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p (n + m − q)) =
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n + m − q = 0 mod p
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More recent observations …
Interpretability

Visualized feature maps match constructed 
patterns in weight space for exact computation.

Expressivity

There exists weight 
configurations (i.e., circuits) 

that can represent exact 
algorithmic task

Training models over 
different tasks can emerge 

generalization on 
compositional tasks

Compositionality

M
odular addition

Induction head

He et al., Learning to grok: Emergence of in-context learning and skill composition in modular arithmetic tasks



Stereotypical Dichotomy

• Rule-based: Reliable 
reasoning through 
programmatic steps.


• Compositionality: Train 
from partial solutions, and 
compose freely to form 
generic solutions.


• Trainability: Fast and 
stable convergence

Symbolism
Connectionism


(In the past) 😬

✅

✅

❌ ✅

❌

❌

Connectionism


(But now) 🤯

✅

✅

✅



Open Questions to Answer
• What are “symbols” represented within neural networks?


• Are there explicit/implicit symbolic-like structures in neural networks?


• If so, can gradient descent discover symbolic structures?


• When and how gradient descent performs regression over these “symbols”?


• Furthermore, how does symbolic structures reshape the weight space?


• Abstraction <=> Compression


• Symbolism <=> Low-dimensionalism 



Learning to Perform Addition
• Given a finite Abelian group  with commutative group action “ ”


• Suppose  has cardinality .


• 🎯 Goal: Training a two-layer neural network that takes inputs  and 
outputs  with gradient descent.

(A, ⋅ ) ⋅

A = {a1, ⋯, an} n = |A |

a1, a2 ∈ A
a1 ⋅ a2

ea1

ea2

Wa

Wb

Wc
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a2

o(a1 ,a
2 )

ea
1 ⋅a

2

2



Neural Architecture
• Neural Architecture


• One-hot embeddings to encode 
group elements: 


• Two layers and weight matrices: 
, ,  with  hidden neurons.


• Quadratic activation: 

ai ↦ ei

Wa Wb Wc q

σ(x) = x2

o(a1, a2) =
1
q

q
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wcjσ (w⊤
ajea1
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x2
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qq



Loss Formulation
• We concatenate each row of weight matrices together as


 for 


• We assume infinitely wide neural networks .


• Training Objective: Mean squared loss over all pairs of .





•  is the centering matrix.


• Optimization. Gradient descent or gradient flow 


.

zj ∝ [W⊤
a,:,j, W⊤

b,:,j, W⊤
c,:,j]⊤ j ∈ [q]

q → ∞

(a1, a2)

H = ∑
a1,a2∈A

P⊥ ( 1
2n

o(a1, a2) − ea1⋅a2)
2

P⊥ = I −
1
n

11⊤

dzj

dt
= − ∇zj

H
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From Infinite-Width Neural Nets to Distribution

• When , we show that the neural networks can be represented with a 
distribution 

q → ∞
μ

μ(z){zj}q∈[n]
q → ∞

H[μ]H({zj}q∈[n])
q → ∞

Illustrated by NanoBanana



Monomial Potential
• Our results show that the loss  over 

neuron population can be written as:





for some function .


• And  is defined as the monomial 
potential





w.r.t. monomial  where  is an 

index set.

H[μ]

H[μ] = L(ρr1
(μ), ⋯ρrm

(μ))

L : ℝm → ℝ

ρr[μ]

ρr(μ) = 𝔼z∼μ[r(z)] = ∫ r(z)dμ(z)

r(z) = ∏
i∈ℐr

zki
i ℐr
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………

ℐr = {i1, i2, i3, i4}

Wa Wb
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Monomial Potentials are Symbols
• Symbols. There exists a binary 

assignment of  such that the 
loss equals to zero: .


• Exact computation and perfect 
generalization.


•  being binary resembles 
boolean variables in symbolic 
reasoning.

ρ1, ⋯, ρm
H[μ] = 0

ρ1, ⋯, ρm

Wc

……

Wa Wb

…

ρ1 = 1 ρ2 = 0 ρ3 = 1

H = 0



Compositional Structure of Monomial Potentials
• Compositionality. Neural networks are 

compositional in MP space.


• Neural space Algebra


• ➕Addition: Stacking two neural networks


• ✖Multiplication: (Kronecker/Hadarmard) product 
of weight matrices of two neural networks.


• Neuron space operation ↔ logical expression.


• ➕Addition between neural nets ↔ “OR” between 
MPs: 


• ✖Multiplication between neural nets ↔ “AND” 
between MPs: 

ρr(μ1 + μ2) = ρr(μ1) + ρr(μ2)

ρr(μ1 * μ2) = ρr(μ1) * ρr(μ2)



Takeaway I

Symbolic Structures are Hidden in Neural Weights

Monomial potentials are machine symbols, inheriting key properties that allows for 
exact computation and generalization.


1. 🔠 Symbolic Variables. Monomial potentials encapsulate neural weights as 
symbolic variables.


2. 🧮 Logical Connectives. Loss function can be re-written as expressions 
over monomial potentials.


3. 🧩 Compositionality. Weight space algebra manifests as composing MP-
representing symbols via AND/OR logics.


4. ⁉ Machine’s symbol are not necessarily human-interpretable symbols?



Gradient Descent => Symbolic Regression

μ0 μT

ρ0

ρr(μ0)

ρT

ρr(μT)

-equivariantO(d)

Neural weights 
training

Symbolic 
regression

• Gradient descent becomes 
regression on MP space.


• The learning process obeys a 
unique symmetry regarding 
orthogonal group.


• When the neurons are rotated by 
 s.t. , then its gradients 

are rotated by the same .


• It forces MPs to converge to 0/1 
solutions.

R RR⊤ = I
R Gradient descent over 

measures

dμt

dt
= ∇W

μ H

Gradient descent 
over MPs 

dρt

dt
= ∇ρL



Dimension Reduction
• The weight space will go through a dimension 

reduction process.


• The entropy-minimizing measure satisfying 
boolean MP assignments form a Riemannian 
manifold of dimension at most  - the number 
of MPs.


• Evidence for weight space regularizations (e.g., 
weight decay)


• The number of involving MPs governs the intrinsic 
dimension even when the hidden dimension is 
going to infinity.


• Evidence for low-rank weights (e.g. LoRA)

m
⋂
r∈ℛ

ρ−1
r (ϱ)

minμ Ent[μ]

-dim∞

-dim
m

Weight Space

MP Space

ρ1ρ2

H



Takeaway II

GD Finds Symbolic Solutions under Geometric Constraints

Gradient descent based training manifests as low-dimensional symbolic 
regression on MPs.


1. 🎯 Neural network training can reveal a symbolic learning process at the 
MP level.


2. 📉 The neural weight space will go through a dimension reduction 
process.


3. 📐 Geometric constraints are essential for discovering symbolic 
structures.



Formal Results



Learning to Perform Modular Addition
• Given a finite Abelian group  with commutative group action “ ”


• Suppose  has cardinality .


• 🎯 Goal: Training a two-layer neural network that takes inputs  and 
outputs  with gradient descent.

(A, ⋅ ) ⋅

A = {a1, ⋯, an} n = |A |

a1, a2 ∈ A
a1 ⋅ a2

ea1

ea2

Wa

Wb

Wc
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Neural Architecture
• Neural Architecture


• One-hot embeddings to encode 
group elements: 


• Two layers and weight matrices: 
, ,  with  hidden neurons.


• Quadratic activation: 

ai ↦ ei

Wa Wb Wc q

σ(x) = x2

o(a1, a2) =
1
q

q

∑
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Loss Formulation
• Represent weights in the Fourier space (  is the -th Fourier basis):


, , , 


• Flatten coefficients for each neuron: .


• Training Objective: Mean squared loss over all pairs of .





•  is the centering matrix.


• Optimization. Gradient descent or gradient flow .

Fk k

waj = ∑
k≠0

zakjFk wbj = ∑
k≠0

zbkjFk wcj = ∑
k≠0

zckjFk ∀j ∈ [q]

zj = [ . . . , zakj, zbkj, zckj, . . . ]0≤k<n ∈ ℝ3n

(a1, a2)

H({zj}j∈[q]) = ∑
a1,a2∈A

P⊥ ( 1
2n

o(a1, a2) − ea1⋅a2)
2

P⊥ = I −
1
n

11⊤

d{zj}
dt

= − ∇H({zj}j∈[q])



Loss Decomposition
Proposition. The loss function  can be reformulated as: ,





H H =
1

n − 1 ∑
k≠0

ℓk +
n − 1

n

ℓk = − 2ρkkk + ∑
k1,k2

|ρk1k2k |2 +
1
4 ∑

p∈{a,b}
∑

k′￼

ρp,k′￼,−k′￼,k

2

+
1
4 ∑

m≠0
∑

p∈{a,b}
∑

k′￼

ρp,k′￼,m−k′￼,k

2

ρk1k2k =
1
q ∑

j

zak1 jzbk2 jzckj, ρpk1k2k =
1
q ∑

j

zpk1 jzpk2 jzckj

• Key Observations


1.  is expanded as a function solely dependent on the empirical measure 


2.  depends on  through averaging on  a subset of monomials:  for some  index set .

H μ(q) = ∑
j∈[q]

δzj

H μ(q) z ↦ ∏
i∈ℐ

zi ℐ

Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets



Formulating Reasoning: Beyond Group Addition

• Consider a parameter space  


•  in the Abelian group example.


• Analyze the limiting measure: ,  when 


• Generalize average over monomials to Monomial Potentials (MPs). 


Definition. A monomial potential (MP)  is defined as the expectation 
of the specified monomial  against the input measure :


M ∈ ℝn

n = 3d

μ(q) → μ q → ∞

ρr : P*(M) → ℝ
r μ

ρr(μ) = 𝔼z∼μ[r(z)] = ∫ r(z)dμ(z)



Formulating Reasoning: Beyond Group Addition

• Specify a set of monomials  associated with the task.


• Generalize loss function  to loss functional over measure :





for some function .


• Optimization over measures.





Intuition: .

ℛ = {r1, ⋯, rm}

H[{zj}] μ

H[μ] = L(ρr1
(μ), ⋯ρrm

(μ))

L : ℝm → ℝ

∂tμt = ∇z ⋅ (μt ∇z( δH
δμ

[μt]))
μt+τ ≈ argminμ∈P(M){H(μ) +

1
2ηtτ

W2(μt, μ)}



Summary of  Generalization

μ(q) = ∑
j∈[q]

δzj

Motivating Example Generalization

An arbitrary measure μ ∈ P*(M)

{ρk1k2k, ρpk1k2k} MPs: ρr(μ) = 𝔼z∼μ[r(z)], r ∈ ℛ

H[μ] = L(ρr1
(μ), ⋯ρrm

(μ))

d{zj}
dt

= − ∇H({zj}) ∂tμt = ∇z ⋅ (μt ∇z( δH
δμ

[μt]))

 H({zj}j∈[q])



Continuous Optimization as Boolean Satisfaction

• Revisiting: 




• A minimizer can be identified:





• Key Observations:


• Modular addition can be solved by finding  that satisfies a binary assignment at the level of  
MPs.


• MPs plays a role similar to boolean variables and  resembles a logical expression.

H = ∑
k≠0

ℓk /(n − 1) + (n − 1)/n .

ℓk = − 2ρkkk + ∑
k1,k2

|ρk1k2k |2 +
1
4 ∑

p∈{a,b}
∑

k′￼

ρp,k′￼,−k′￼,k

2

+
1
4 ∑

m≠0
∑

p∈{a,b}
∑

k′￼

ρp,k′￼,m−k′￼,k

2

ρkkk = 𝕀(k ≠ 0), ρk1k2k = 0, ρpk1k2k = 0, ∀p ∈ {a, b}, k1, k2, k ∈ [d]

μ

L



Generalization Beyond Group Addition
Definition. Suppose a measure  has 0-set  and 1-set , (or 
equivalently 0/1-set ), then  for every  and  for every 

.


• 0/1-sets test satisfiability of each MP for the measure .


• The solutions to Abelian group reasoning has 0-set  and 1-set :


• 


• 


• 


•

μ ∈ P*(M) ℛ0 ⊂ ℛ ℛ1 ⊂ ℛ
(ℛ0, ℛ1) ρr(μ) = 0 r ∈ ℛ0 ρr(μ) = 1

r ∈ ℛ1

μ

ℛc ∪ ℛn ∪ ℛ* ℛg

ℛc := {rk1k2k |k1, k2, k not all equal}

ℛn := {rp,k′￼,−k′￼,k}

ℛ* = {rp,k′￼,m−k′￼,k |m ≠ 0}

ℛg := {rkkk |k ≠ 0}



Symbolism over Statistical Measures
Definition 1. For two measures  and , define:


• (1) addition as:  such that  for every 
measurable ; 


• (2) multiplication as:  such that  is the measure of 
 where , ,  denotes element-wise multiplication;


• (3) the identity element as , i.e., the point mass at the -dimensional all-
one vector;


• (4) the zero element as the zero measure.

μ1 μ2

μ+ = μ1 + μ2 μ+(A) = μ1(A) + μ2(A)
A ⊂ M

μ* = μ1 * μ2 μ*
z* = z1 ⊙ z2 z1 ∼ μ1 z2 ∼ μ2 ⊙

δ1d
d



Algebra of  Measures and MPs
• Theorem 1.  is a commutative semi-

ring. Every MP  is a ring homomorphism:


• (1) 


• (2) 


• Neuron space operation ↔ logical expression.


• ➕Addition between measures ↔ “OR” between 
MPs.


• ✖Multiplication between measures ↔ “AND” 
between MPs.

⟨P*(M), + , * ⟩
ρr(μ)

ρr(μ1 + μ2) = ρr(μ1) + ρr(μ2)

ρr(μ1 * μ2) = ρr(μ1) * ρr(μ2)



Compositionality of Neural Solutions
• Partial solutions can be composed to generate general solutions!


1. Find special solutions satisfying subsets of constraints 


2. Use union/intersection to combine  to satisfy the target 0/1 sets.


3. Construct global minimizers by mapping logical language to neural weights


Examples. If  has 0/1-sets  and  has 0/1-sets , then:


1.   has 0/1-sets ;


2.  has 0/1-sets ;


3. If  is a global optimizer and  has 1-set  (the entire set of MPs), then  
is a global optimizer.

ℛ1, ⋯, ℛk

ℛ1, ⋯, ℛk

μ1 (ℛ0, ℛ1) μ2 (𝒮0, 𝒮1)

μ1 * μ2 (ℛ0 ∪ 𝒮0, ℛ1 ∩ 𝒮1)

μ1 + μ2 (ℛ0 ∩ 𝒮0, (ℛ1 ∩ 𝒮0) ∪ (ℛ0 ∩ 𝒮1))

μ1 μ2 ℛ μ1 * μ2



However, …. 

❓Open Questions


Can neural network training discover “symbolic” solution?

• The gradient-based training may still learn  that achieves non-binary MPs, e.g.


 while  for every 

μ

∑
k≠0

ρkkk = 0 ρkkk ≠ 0 k ≠ 0

Finding binary assignment of MPs:



ρkkk = 𝕀(k ≠ 0), ρk1k2k = 0

ρpk1k2k = 0, ∀p ∈ {a, b}, k1, k2, k ∈ [d]

Finding  minimizing the population risk:
μ*

μ* = arg min 𝔼a1,a2
ℓ (o(a1, a2), ea1⋅a2)

Neural Network Training Symbolic Regression



When “GD on ” = “GD on MPs”?μ
• Theorem 2. Consider a trajectory of measure  governed by Wasserstein gradient flow 

. Assume that:


1. ✅  at the initialization;


2. ✅  and is odd for every ;


3. ✅  is -equivariant:  for every .


• Then each monomial potential is optimized coordinate-wisely as:





where  is a time-dependent scalar function only dependent on .

{μt}t≥0

∂tμt = ∇z ⋅ (μt ∇z( δH
δμ

[μt]))
μ0 = 𝒩(0,I)

deg r ≥ 3 r ∈ ℛ

∇
δH
δμ

[μt] O(d) ∇
δH
δμ

[μt](Rx) = R∇
δH
δμ

[μt](x) R ∈ O(d)

∂tρri
(μt) = − Ci(t)∂ρri

L(ρ)

Ci(t) > 0 ρri



Neural Weight Training => Symbolic Regression

Under geometric constraints (i.e., -equivariant velocity field), optimizing the 
measure with WGF is equivalent to directly performing gradient descent on MPs.

O(d)

μ0 μT

ρ0

ρr(μ0)

ρT∂tρri
(μt) = − Ci(t)∂ρri

L(ρ), ∀r

ρr(μT)

∂tμt + ∇z ⋅ (μt ∇z( δH
δμ

[μt])) = 0

-equivariantO(d)

Neural weights 
training

Symbolic 
regression



Back to Modular Addition Example
• Consider the MP  for some , we can derive that


.


• Then by the previous Theorem, we find that:











•  converges to the binary results 
.

ρkkk k ≠ 0

∂ρkkk
L ∝ ρkkk − 1

∂
∂t

ρkkk(μt) = Ckkk(t)(1 − ρkkk(μt))

⇓

ρkkk(μt) = 1 − exp(−Ckkkt)

ρkkk(μt) → 1
ρkkk = 𝕀(k ≠ 0)

ℓk = − 2ρkkk + ∑
k1,k2

|ρk1k2k |2 +

1
4 ∑

p∈{a,b}
∑

k′￼

ρp,k′￼,−k′￼,k

2

+

1
4 ∑

m≠0
∑

p∈{a,b}
∑

k′￼

ρp,k′￼,m−k′￼,k

2

ρkkk = 𝕀(k ≠ 0),
ρk1k2k = 0,
ρpk1k2k = 0

Modular Addition Example

Boolean Solutions

Loss



Revisiting Dimensionality of Dynamics

μ0 μT

ρ0

ρr(μ0)

ρT∂tρri
(μt) = − Ci(t)∂ρri

L(ρ), ∀r

ρr(μT)

∂tμt + ∇z ⋅ (μt ∇z( δH
δμ

[μt])) = 0

-equivariantO(d)

Neural weights 
training

Symbolic 
regression

Dynamics in -dimensional spacem

Dynamics in infinite-dimensional space



Dimension Reduction
• Consider stationary points of MP dynamics (i.e., MP 

assignments vanishing the gradient)   such that 



•  realizes  while minimizing differential entropy takes 
the form:





where  is determined to let  for every . 


• This reduces the infinite-dimensional problem to a 
Riemannian manifold of dimension at most .

ϱ ∈ ℛm

∇L(ϱ) = 0

μ* ϱ

μ* ∝ exp (
m

∑
i=1

λiri(x))
λi ρri

[μ*] = ϱi i ∈ [m]

m

⋂
r∈ℛ

ρ−1
r (ϱ)

minμ Ent[μ]

-dim∞

-dim
m

Measure Space

MP Space

ρ1ρ2

L



Recap: RG-Type Degree of Freedom
• Renormalization group theory studies the effective degree of freedom of the 

system by analyzing the Jacobian matrix  of the dynamical 

system:  at its fixed point .


• Stable Manifold Theorem. The manifold  containing initial points  
which converge to fixed point  is tangent to the sum of eigenspaces 
associated with eigenvalues of .


•  = # of negative eigenvalues in 


• As the dynamical system evolves, the effect of points in  are diminishing. 
The remaining components are the actually effective ones.

H = Df(x*)
dx
dt

= f(x) x*

M x
x*
H

dim M H

M



Reduction  on RG-Type Degree of Freedom

• Theorem. Consider loss functional , suppose  is 
displacement-convex, then all eigenfunctions corresponding to non-zero 
eigenvalues of second variation  lie in a subspace spanned by the 
monomial set , i.e,  if .

H[μ] = L(ρr1
(μ), ⋯ρrm

(μ)) H

𝕃(t)
ℛ vi ⊂ span(ℛ) λi ≠ 0

The degree of freedom in RG sense is bounded by .|ℛ | = m



RG-Type Degree of Freedom Reduction
• Moreover, if  , then  will have non-increasing eigenvalues:


 .


• There will be finitely many  where an eigenvalue of  
crosses zero.

[∇3L]k ∇kL ⪰ 0 𝕃(t)
d
dt

λ(t) ≤ 0

0 ≤ t1 ≤ t2 ≤ ⋯ ≤ tm 𝕃(t)

An emergence of negative eigenvalues => A spontaneous reduction on  RG-type 
degree of freedom

Finite-time reduction on degree of freedom.



Sample Complexity to Learn -InvarianceG

Theorem. Suppose  is a Lie group and  is a data manifold. Consider a family 
of -invariant functions , square-integrable up to order  over .


Denote  and let  for some positive integer . 
Given , and a -invariant function , then with probability 
at least , empirical risk minimization can learn -approximate -invariant 
function  with  many samples, where:


•  for finite .


•  for infinite .

G Md
G ℱs(Md) s > 0 Md

d′￼ = dim(Md /G) s = (1 + κ)d′￼/2 κ ≥ 0
θ ∈ (0,1] G f* ∈ ℱθs(Md)

1 − δ ϵ G
̂f n

n = Θ (max {1/( |G |ϵ1+1/θ(κ+1)), log(1/δ)/ϵ2}) G

n = Θ (max {vol(Md /G)/ϵ1+1/θ(κ+1), log(1/δ)/ϵ2}) G

∂tμt + ∇z ⋅ (μt ∇z( δH
δμ

[μt])) = 0

-equivariantO(d)



Sample Complexity to Learn -InvarianceG
Remember  is the target group invariance (e.g., ).


•  for finite .


•  for infinite .


• If  is finite, group invariance reduces sample complexity by a factor of 
.


• If  is infinite, it reduces sample complexity by contracting the data column 
through its orbits.

G O(d)

n = Θ (max {1/( |G |ϵ1+1/θ(κ+1)), log(1/δ)/ϵ2}) G

n = Θ (max {vol(Md /G)/ϵ1+1/θ(κ+1), log(1/δ)/ϵ2}) G

G
1/ |G |

G



Summary of Results
We have shown:


• Algebraic structures are inherent in neural networks


• Continuous weight-space optimization can lead to solutions with symbolic 
structures under geometric constraints.


• Low-dimensional representations is a natural result of symbolic abstraction, 
enforced by information-, optimization-, and geometry-theoretic constraints.



Thanks for Listening!

Covered work 


