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Understanding the geometry of the loss landscape in deep neural networks (DNNs) is central to machine learning research
because of its role in generalization. [2] suggested that solutions in flatter regions generalize better than those in sharper ones.
Empirical evidence supports this: [3] showed that small-batch training often converges to flatter minima, and methods like
Entropy-SGD were designed to encourage exploration of wider valleys. Yet the link between loss landscape geometry and
generalization remains unsettled. [1] argued that sharp minima can also generalize, though without strong empirical validation.
The prevailing view, however, is that flatter minima are usually linked to better generalization, while sharper minima tend to
cause overfitting.
Motivated by this connection between geometry and generalization, we propose a flatness-aware regularization technique that
explicitly penalizes the curvature of the loss surface by incorporating an estimate of the trace of the squared Hessian into the
training loss. We define the total loss function for a mini-batch (x, y) as:

Ltotal = Ltask(fθ(x), y) + λ · Tr(H
2)

B
(1)

where Ltask(fθ(x), y) denotes the base task-specific loss, λ is a regularization coefficient controlling penalty strength, B
is the batch size, and Tr(H2) is the trace of the squared Hessian with respect to θ, estimated via Hutchinson’s method. By
penalizing this curvature measure, the optimizer is encouraged to find flatter regions of the loss surface, which we hypothesize
leads to more robust generalization on unseen data.
Computing the full Hessian is notoriously expensive for modern deep networks. To make our curvature penalty feasible, we used
Hutchinson’s stochastic trace estimator to approximate Tr(H2) efficiently. This involves multiplying the Hessian by randomly
sampled probe vectors and using their quadratic forms to estimate the trace. This leverages the identity E[vTH2v] = Tr(H2)
for random v with zero mean and unit variance.

We used a 2-layer MLP with ReLU activation on CIFAR-100 to examine how flatness-aware (FA) regularization reshapes
both optimization and generalization. With λ = 0 the model (no FA) reached a final accuracy of ∼26.3% and applied no curvature
penalty. Introducing FA changed the behavior: a moderate penalty (λ = 0.01) gave the best balance with final accuracy ∼27.0%
and peak accuracy ∼27.8%, while maintaining lower curvature than the baseline. Larger penalties (λ = 0.1 and λ = 1.0) further
reduced curvature estimates but slightly decreased final accuracy (∼26.7% and ∼25.8% ). The efficiency trade-off was clear: the
baseline finished in ∼60s, whereas all FA settings increased training time substantially (∼2200-2400 s due to the second order
computation), with little added benefit at higher λ. Taken together, these results show that FA regularization is most effective
when applied at a moderate strength, striking a balance between fitting capacity, generalization, and computational efficiency.

Figure 1: Loss landscape comparison showing the difference between Baseline
(λ = 0) and FA-Regularized (λ = 0.01) models. Blue areas indicate flatter loss
for the FA-Regularized model.

Table 1: Performance of FA regularization on CIFAR-100.

Lambda Final Acc Best Acc Avg Flatness Train Time

0.000 0.2633 0.2800 0.000000 60.855
0.001 0.2633 0.2833 23.050173 2290.775
0.010 0.2700 0.2783 10.739012 2433.535
0.100 0.2667 0.2967 4.144254 2203.875
1.000 0.2583 0.2983 1.549933 2337.865
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