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Existing work Literature

e Precision
e Recall
e CHAIR (Rohrbach et al. 2018)

o CHAIR,- fraction of captions having hallucinations

o CHAIRI - avg. fraction of objects hallucinated (ie, 1 - Precision)
e POPE (Li et al. 2023)
o Claim: Objects hallucinations are related to frequently occurring objects,
and commonly co-occurring objects.
o Probe the model with questions about the presence of objects in a given
image:
m  randomly sample objects
m fop-k most frequent objects
m fop-k frequently co-occurring objects
o ‘Independent” of generated captions.



Motivation MSUCILY

Object hallucinations are known to be influenced by object statistics of the
training data

o Frequently occurring objects

o Commonly co-occurring objects

Hypothesis: Due to autoregressive generation, previous objects mentioned in
the generated part also influence the likelihood of object hallucinations in the
remainder of the output?

For LLaVA-7B 20% of the hallucinated objects co-occurred in the training
dataset with at least one preceding objects.



Motivation MSUCILY

e Object hallucinations are known to be influenced by object statistics of the
training data
o Frequently occurring objects
o Commonly co-occurring objects

Hypothesis: Due to autoregressive generation, previous objects mentioned in
the generated part also influence the likelihood of object hallucinations in the
remainder of the output?

For LLaVA-7B 20% of the hallucinated objects co-occurred in the training
dataset with at least one preceding objects.

e Can we quantify the semantfic influence of ground-truth objects, frequently
occurring objects, and past objects on hallucinated objects?



Our contributions Sl el

e Understanding the Influence of Generation Order: We analyze how the sequence of
already generated objects affects further hallucinations.

e Semantic Analysis of Hallucinations: We use word embeddings to examine the
relationship between hallucinated objects, ground-truth objects, already generated
objects, and frequently occurring objects.

e Detecting Out-of-Domain Hallucinations: Our approach enhances object detection
using LLM-generated captions and verifies the existence of previously unseen
objects with an ensemble of LVLMs.
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Method

LLM-augmented object detection

1. Detection - parsing-based objects.
2.  Augmentation - using LLaMA-2-7B-Chat

Few-shot prompt (k=5):

“Caption: The image depicts a group of zebras standing and grazing in a lush, grassy
field. There are three zebras in total, with one positioned on the left side of the field,
another in the center, and the third on the right side. They are enjoying their fime in
the green pasture, surrounded by trees which add to the serene atmosphere of the
scene.

Objects: ['zebra", "trees", "field"]

For the 'Caption’ given below, return the 'Objects' as a Python list.

3. Filtering - Remove objects not present in the caption and preserve ordering.

LLM-augmented detection achieves (almost) perfect precision and recall.
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Oracle using an ensemble of LVLMs Method

Oracle verification: “Does the image
contain <object>¢ Please respond
with only Present or Absent."

MSCOCOQO objects:
o . sandwich
e Majority voting among
InstructBLIP, LLaVA, MiniGPT-4, Non-MSCOCO
and mPLUG-Ow| objects:

lettuce: absent
tomato: present
onion: absent
ingredients: present

e Human evaluation for
MultimodalGPT on 100
MSCOCO validation images:

o InstructBLIP: 89.57%

LLaVA: 88.42%

MINiGPT-4: 84.94%

MPLUG-OwI: 84.94%

Ensemble: 93.43%

O O O O
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Similarity calculation Method
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Knee-point analysis for CAOS, Method

Using GloVe similarities Using MiniLM-L6 similarities
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e CAOS, scores for all models saturate to some extent at k = 3
e Top-3 most frequent objects disproportionately appear as hallucinations.



Context-Aware Object Similarities Method

CAOS scores:
CAOST= Maximum similarity with ground-truth objects
CAOSX: Maximum similarity with already generated and ground-truth objects

CAOSK = Maximum similarity with top-K frequently occurring in-domain objects



Context-Aware Object Similarities Method

CAOS scores:
CAOST= Maximum similarity with ground-truth objects
CAOSX: Maximum similarity with already generated and ground-truth objects

CAOSK = Maximum similarity with top-K frequently occurring in-domain objects

CAOS metrics (Higher is better):

CAOST/X= CAOST/CAOSX

CAOS YK CAOS X/CAOS I'e

CAOSan= (CAOS T+ CAOS X+ CAOS K)/3



CAOS-based comparison of LVLMs Results

Model | InstructBLIP LLaVA mPLUG-Owl MiniGPT-4 Multimodal-GPT
Precision 0.98 0.85 0.79 0.92 0.88
Recall 0.62 0.85 0.74 0.78 0.67
# Objects 2.29 4.97 4.49 491 3.26
CHAIRs 0.04 0.51 0.56 0.33 0.32
POPE-F1 0.84 0.68 0.67 0.74 0.67
CAOS1-GloVe 0.30 0.38 0.37 0.40 0.40
CAOS x-GloVe 0.32 0.41 041 0.45 0.42
CAOS k—GloVe (k=3) 0.52 0.50 0.51 0.47 0.47
CAOS 1, x—GloVe 0.94 0.93 0.90 0.89 0.95
CAOS x,x—GloVe 0.62 0.82 0.80 0.96 0.89
CAOS,,4,—GloVe 0.38 0.43 043 0.44 0.43
CAOS-MiniLM-L6 0.26 0.40 0.37 0.35 0.42
CAOS x-MiniLM-L6 0.27 0.43 0.40 0.40 0.45
CAOS xk—MiniLM-L6 (k=3) 0.52 0.54 0.53 0.45 0.51
CAOS 1, x-MiniLM-L6 0.96 0.93 0.92 0.88 0.93
CAOS x; x-MiniLM-L6 0.52 0.80 0.75 0.89 0.88
CAOS,.4—MiniLM-L6 0.35 0.46 043 0.40 0.46




CAQOS-based comparison of LVLMs Results

InstructBLIP
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Comparison across various groups
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Results

CAQS scores are largely
similar for in-domain and
out-of-domain
hallucinations.

Out-of-domain
hallucinations are sfill
influenced by frequent
MSCOCO objects, though
to a lesser extent.
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Results

CAQS scores are largely
similar for in-domain and
out-of-domain
hallucinations.

Out-of-domain
hallucinations are sfill
influenced by frequent
MSCOCO objects, though
to a lesser extent.

Excluding the top-3 most
frequent MSCOCO objects

leads to a dip in CAOSK
scores, indicating that
these objects
disproportionately appear
as hallucinations across
models.



Sensitivity fo diverse prompts Results

SL No. | Instruction

1. ”Provide a brief description of the given image.”

2. ”Question: Generate a short caption of the image. Answer:

3. ”Create a short textual summary for the image.”

4. ”Generate a concise description for the image.”

5. ”Write a succinct summary capturing the essence of the image.”

6. ”Craft a brief narrative that encapsulates the scene depicted in the image.”
7. ”Summarize the image with a few descriptive words.”

8. ”Compose a short, evocative caption for the image.”

9. ”Describe the image using minimal words but maximum impact.”

10. ”Formulate a concise and descriptive caption for the image.”

11. ”Write a short, impactful description for the image.”

12. ”Sum up the image in a few words, capturing its essence effectively.”

13. ”Craft a brief but descriptive caption for the image.”

14. ”Write a concise summary that encapsulates the image’s message or mood.”

Table 3: List of all instructions used for our experiments.
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Sensitivity to diverse prompts
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Results

CAQS scores are largely stable to
changes in instructions.

CAQS scores have different ranges
across the different LVLMs.

CAQS scores calculated using
MiniLM-L6 embeddings seem to be
slightly more prone to having outliers
than their corresponding GloVe
counterparts.
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