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LLMs struggle at Implicit Reasoning w/ Parametric Memory

Implicit reasoning: reasoning without explicit verbalization of
intermediate steps (e.g., Chain-of-Thought) Composition

Parametric memory: facts & rules stored in weights
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* LLMs only show substantial evidence in resolving the first hop

< Scaling only improves the first hop; “compositionality gap” does Comparison
not decrease )

Zhu et al.

¢ GPT-4 cannot do implicit composition or comparison well

Press et al. Measuring and Narrowing the Compositionality Gap in Language Models. Findings of EMNLP-23.
Yang et al. Do Large Language Models Latently Perform Multi-Hop Reasoning? ACL-24.
Zhu et al. Physics of Language Models: Part 3.2, Knowledge Manipulation. ICML-24 Tutorial.



Why Implicit Reasoning? (cant we just “CoT” everything?)

e The default mode of large-scale (pre-)training

e Fundamentally determines how well LLMs acquire structured representations
of facts and rules from data

e Propagateble knowledge updates & systematic generalization (more later)



Why Parametric Memory? (can’t we do retrieval & long-context?)

e Unique power in compressing and integrating information at scale

e Important for tasks with large intrinsic complexity

e E.g., reasoning problems with large search spaces (example later)



Research Questions

e |s implicit reasoning doomed given that even the most capable models
struggle?

e Can it be resolved by further scaling data and compute, or are there
fundamental limitations of Transformers that prohibit robust acquisition of this
skill?



Approach: Synthetic Data & Training from Scratch

e Allows us to control the data and perform clean evaluations

e Important nowadays as pretraining/fine-tuning corpora keeps penetrating
downstream evals



Reasoning as Rule Induction & Application
e [nduce latent rules from a mixture of atomic facts

and inferred facts (deduced via latent rules)
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Reasonmg as Rule Induction & Application
ID: unseen inferred facts deduced from the same set

of atomic facts underlying the observed inferred facts
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Lake et al. Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. ICML-18.




Reasoning as Rule Induction & Application

Composition
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Model & Optimization
e Standard decoder-only transformer as in GPT-2
e 8 layers, 768 hidden dimensions and 12 attention heads

e AdamW with learning rate 1e-4, batch size 512, weight decay 0.1 and 2000
warm-up steps

e “Concept-level” inputs: each entity/relation has its own learnable embedding

e More variants later



#1: “Grokking” in |D generalization

Composition Comparison
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#2: Difference in OOD generalization

Composition Comparison
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#3. Data distribution, not data size, drives generalization
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Important Questions Remain

e What happens during grokking?
e Why does grokking happen?

e Why no systematic generalization?

These require a deeper look inside of the model



Analyzing the (change) in inner workings during grokking

e Logitlens
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Generalizing Circuits (after Grokking)

Composition Comparison




Changes during grokking
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e  Causal connection between S[5, r1] and the final prediction t grows significantly
e MRR(r2) gradually improves as S[5, r2] (via logit lens); S[5, r1] represents b throughout
e => Model gradually forms the second hop in the upper layers

e  When grokking starts, very likely directly associates (h, r1, r2) with t, mostly memorization



Understanding & Improving OOD generalization

Composition Comparison




Understanding & Improving OOD generalization
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When inputs are at the surface level...

During grokking, the model seems to gradually stores the
later surface-name tokens in the bridge hidden state
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When inputs are at the surface level...



When inputs are at the surface level...
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Surface-level Inputs & Binding
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The binding problem & the “Reversal Curse”
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e Inconsistent entity representations when switching roles between perceived subjects and predicted
objects

e Representational entanglements cause interferences on learning dynamics and impede
generalization

Wang et al. Is the Reversal Curse a Binding Problem? Uncovering Limitations of Transformers from a Basic Generalization Failure. arXiv-25.



Grokking in LLM Pretraining
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The Power of Parametric Memory for Complex Reasoning

What exactly are we going towards? Why parametric memory?

e Unique ability to compress and integrate information at scale for complex
reasoning



Challenging reasoning tasks with large search space

O Query Entity
Q Bridge Entity I/A / / /

= Gold Proof \O/

e Non-parametric memory: information stored in context

o Explicit (verbalized) reasoning done in context

e Parametric memory: information stored in weights

o Implicit reasoning done during information internalization



Challenging reasoning tasks with large search space

O Query Entity
Q Bridge Entity

mp (G0ld Proof

Table 1: Results on the complex reasoning task. Direct/CoT: predict the answer directly/verbalize the

reasoning steps. “+R”: retrieval augmentation.

GPT-4-Turbo

Gemini-Pro-1.5

Direct+R  CoT+R Direct CoT Direct+R CoT+R

Grokked Transformer

Accuracy (%) 333 31.3 287 11.3

99.3

1.00

0.75

0.50

Accuracy

0.25

0.00

\ - _
\\ - JEPA + MemoryLayer (P)
\ -®- Standard Transformer (P)
\
[ e -®- 03-Mini-High (NP)
\ B 2NN -@- Gemini-2.0-Flash-Thinking (NP)
3, e
b~\
*-———— ——0——9o

10 20 30 40
Branching Factor



Summary & Discussion

Grokking in the acquisition of implicit reasoning skills
Various levels of generalization across tasks & rules

The binding problem in Transformer models
o  Both individual concepts & atomic knowledge pieces

o Need systematic mechanisms with less human scaffolding
Explicit & implicit reasoning
o  Chain-of-thought & “looped” Transformers

Non-parametric & Parametric Memory

o Long-context & “test-time training”



Thanks!

e https://arxiv.org/abs/2405.15071

e https://github.com/OSU-NLP-Group/GrokkedTransformer
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