

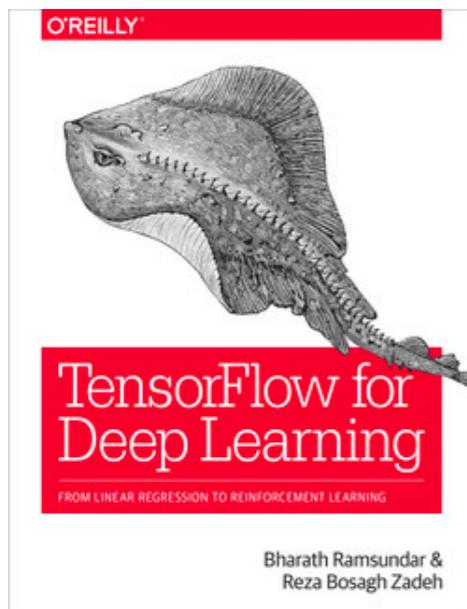
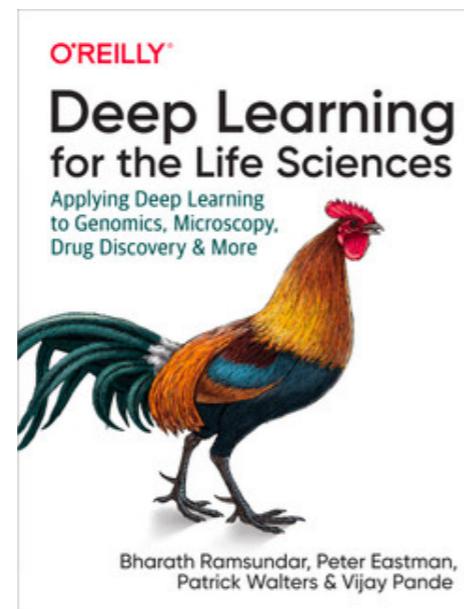
BHARATH RAMSUNDAR

Deep Forest Sciences

TOWARDS BREAKTHROUGH
GENERATIVE AI FOR CHEMISTRY

BRIEF INTRO: BHARATH RAMSUNDAR

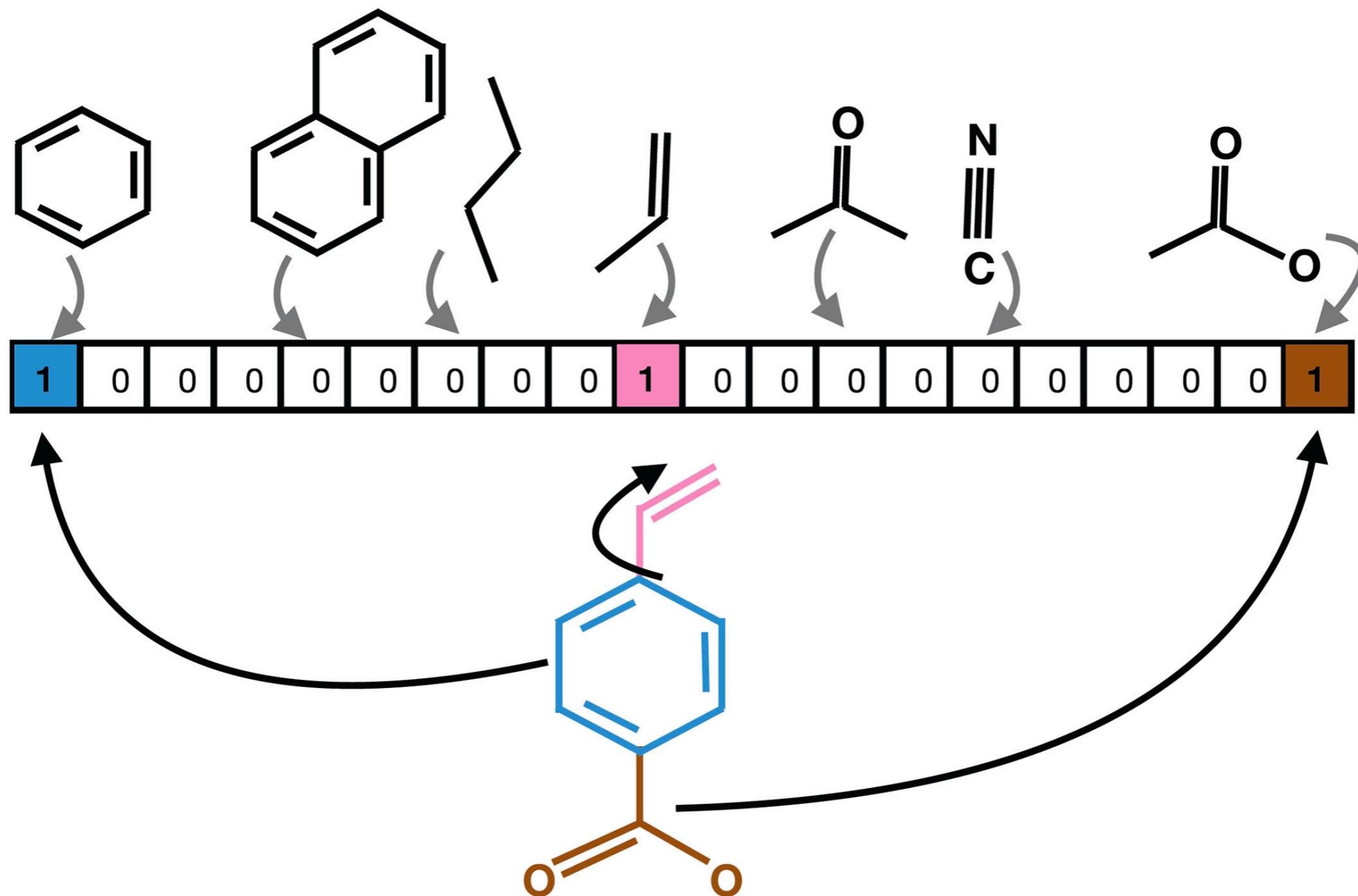
- ▶ Stanford PhD, Pande Group, UCB EECS/Math Alum
- ▶ Lead Developer of DeepChem
- ▶ Founder/CEO of Deep Forest Sciences



SELECTED PUBLICATIONS AND PATENTS

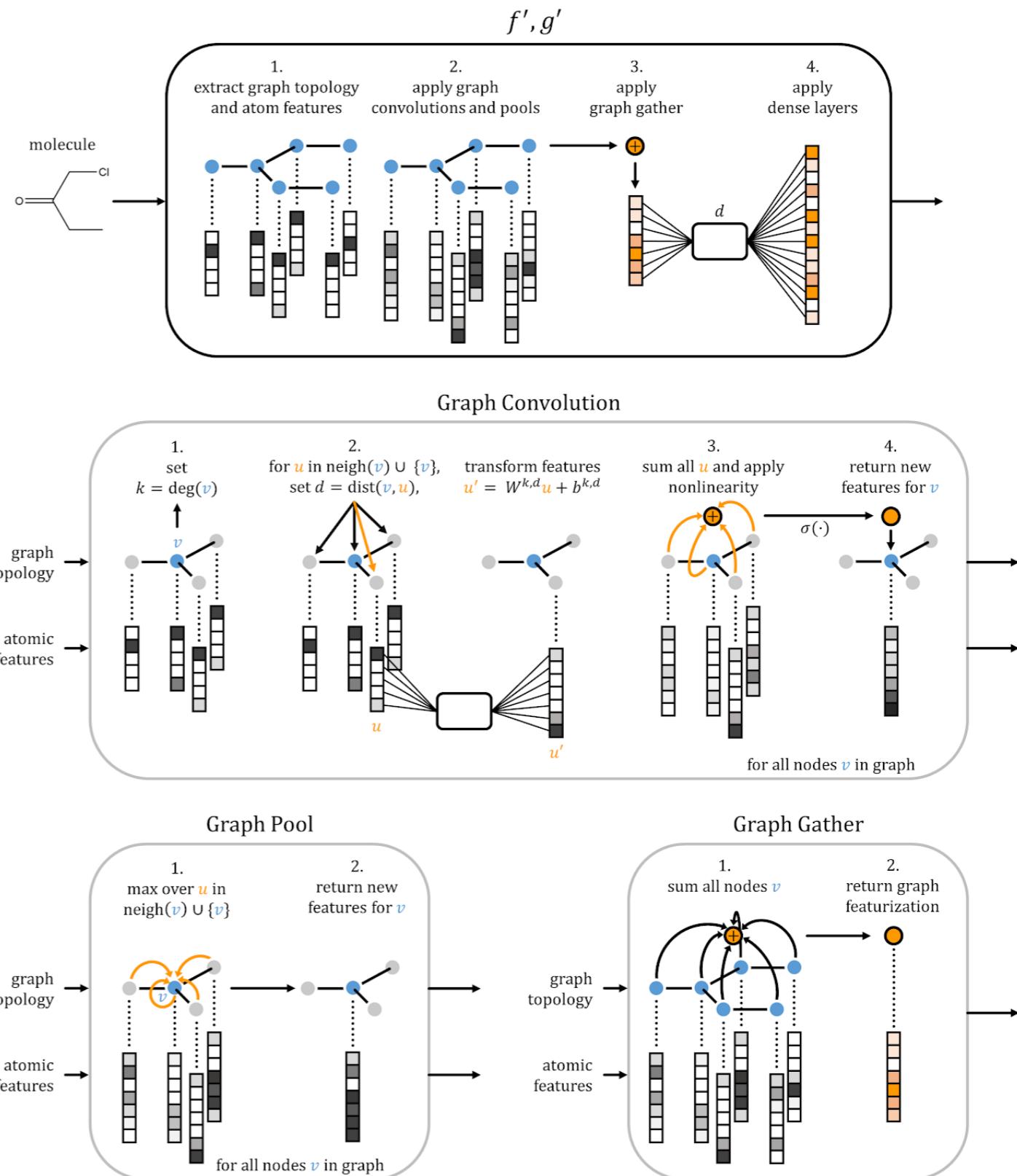
Research Publications	# Citations
A Guide to Deep Learning in Health Care	5520
MoleculeNet: A Benchmark for Molecular Machine Learning	3803
Low Data Drug Discovery with One-shot Learning	1024
Chemberta: Large Scale Self Supervised Retraining for Molecular Property Prediction	919
Massively Multitask Networks for Drug Discovery	679
Patents	# Citations
Non-volatile key-value store	553
Conditional iteration for a non-volatile device	302
Books	Publisher
Deep Learning for the Life Sciences	O'Reilly Media
TensorFlow for Deep Learning	O'Reilly Media
Differentiable Physics	In Prep.

MOLECULAR MACHINE LEARNING 101

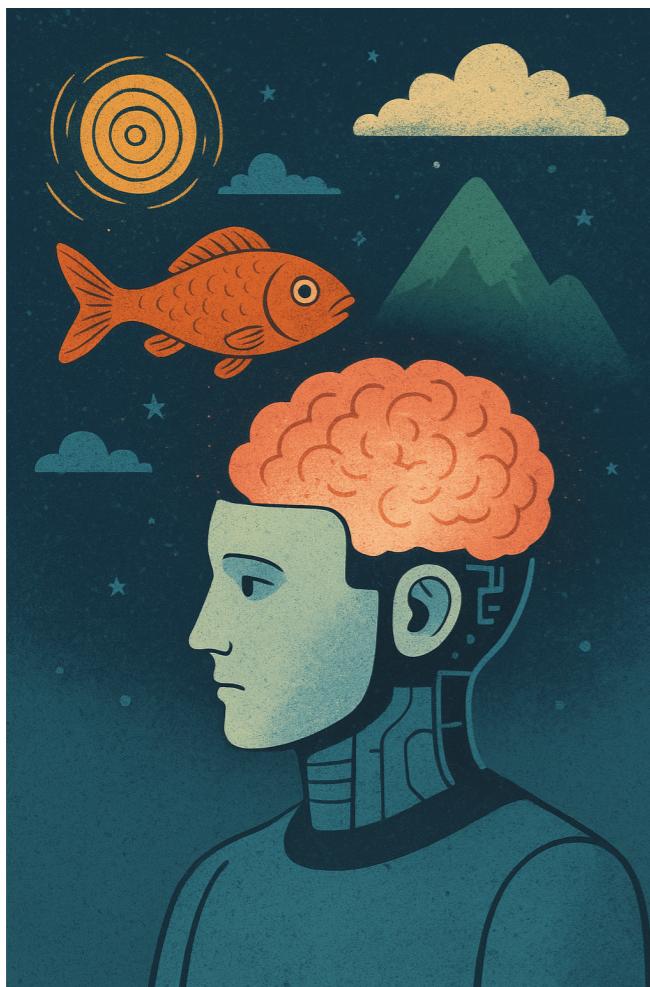
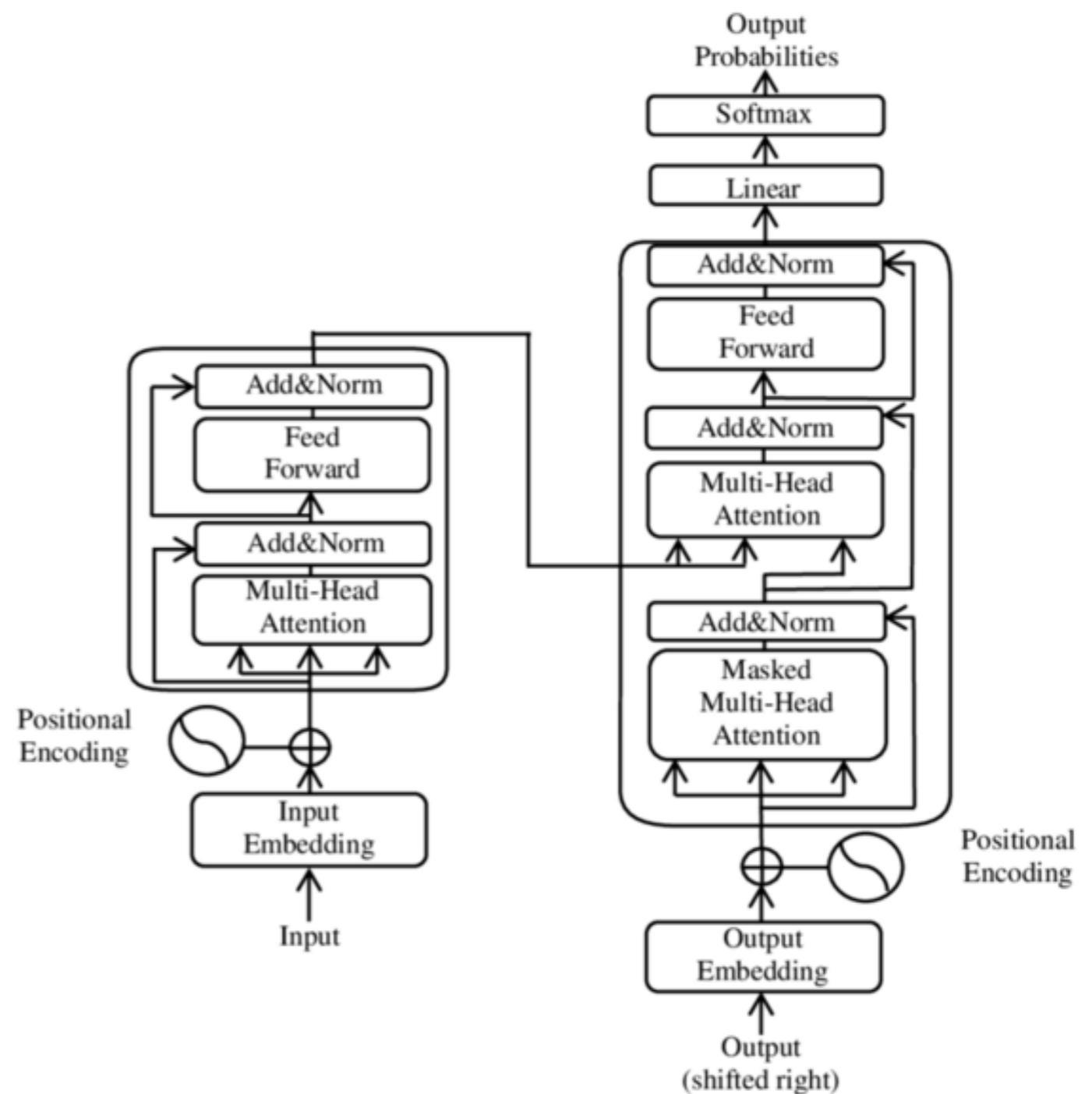


Raghunathan, Shampa, and U. Deva Priyakumar. "Molecular representations for machine learning applications in chemistry." *International Journal of Quantum Chemistry* 122.7 (2022): e26870.

GRAPH CONVOLUTIONS LEARN FUNCTIONS ON MOLECULES

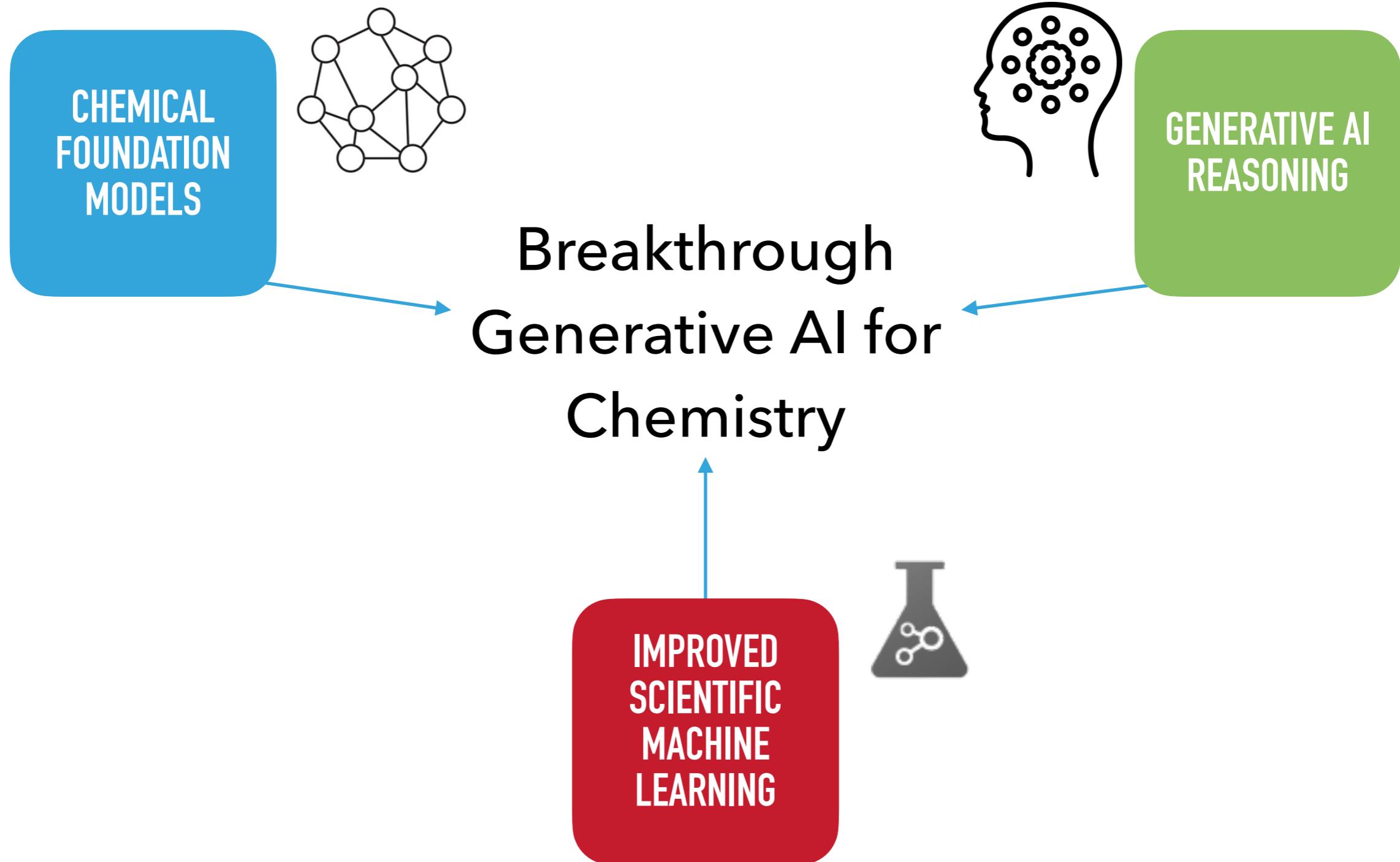


THE AGE OF GENERATIVE AI?

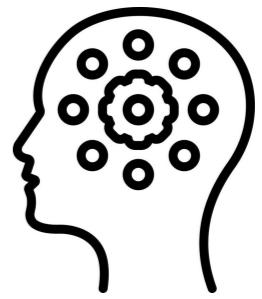


What ChatGPT thinks AI hallucination means!

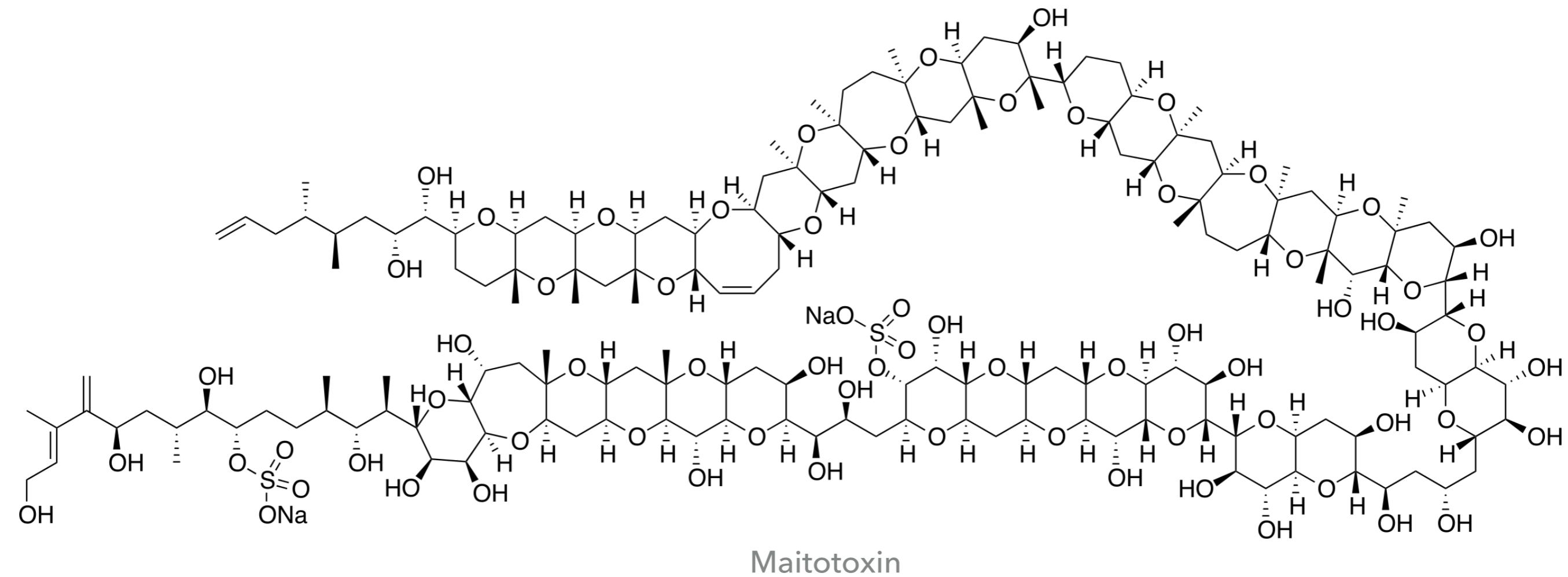
HOW CAN WE MAKE GENERATIVE AI WORK FOR CHEMISTRY?



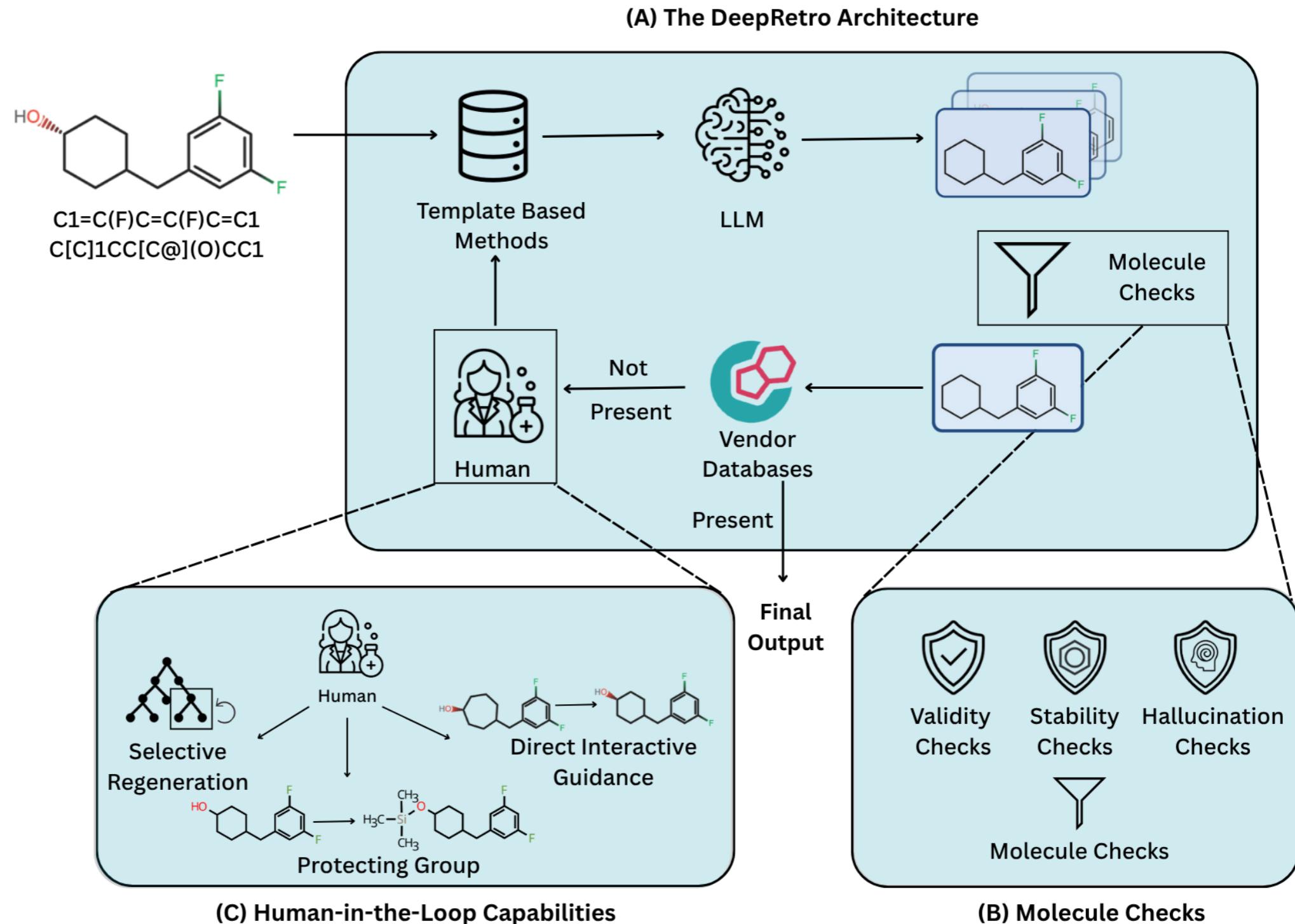
DEEPRETRO



CHEMICAL SYNTHESIS CAN BE CHALLENGING

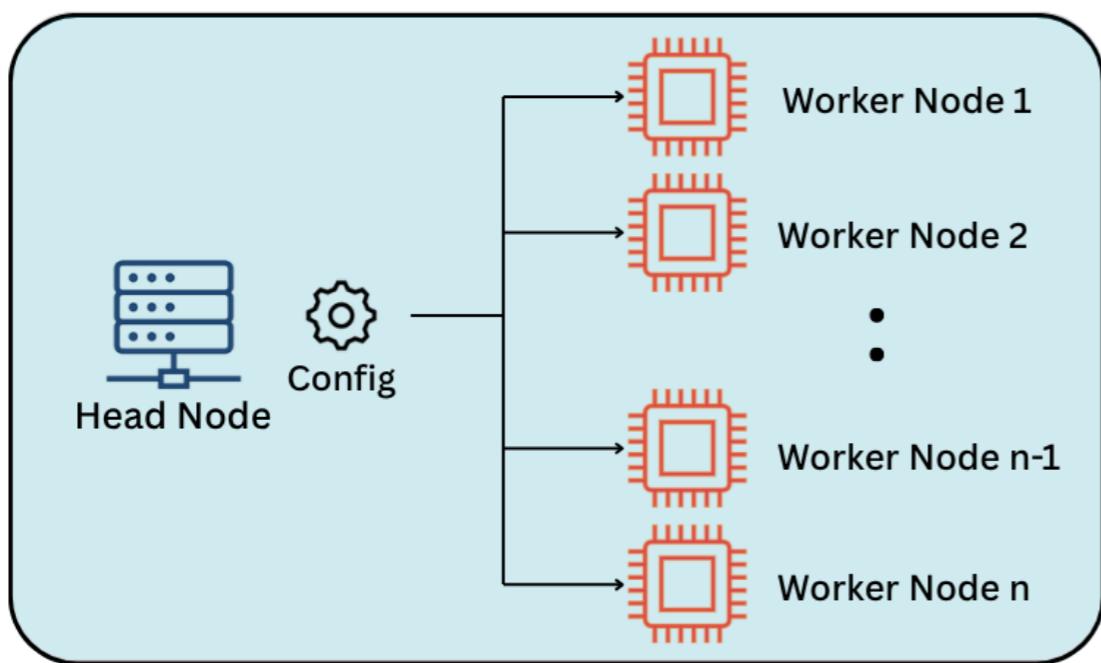


DEEPRETRO OFFERS A NOVEL GENERATIVE AI - HUMAN LOOP FOR SYNTHESIS

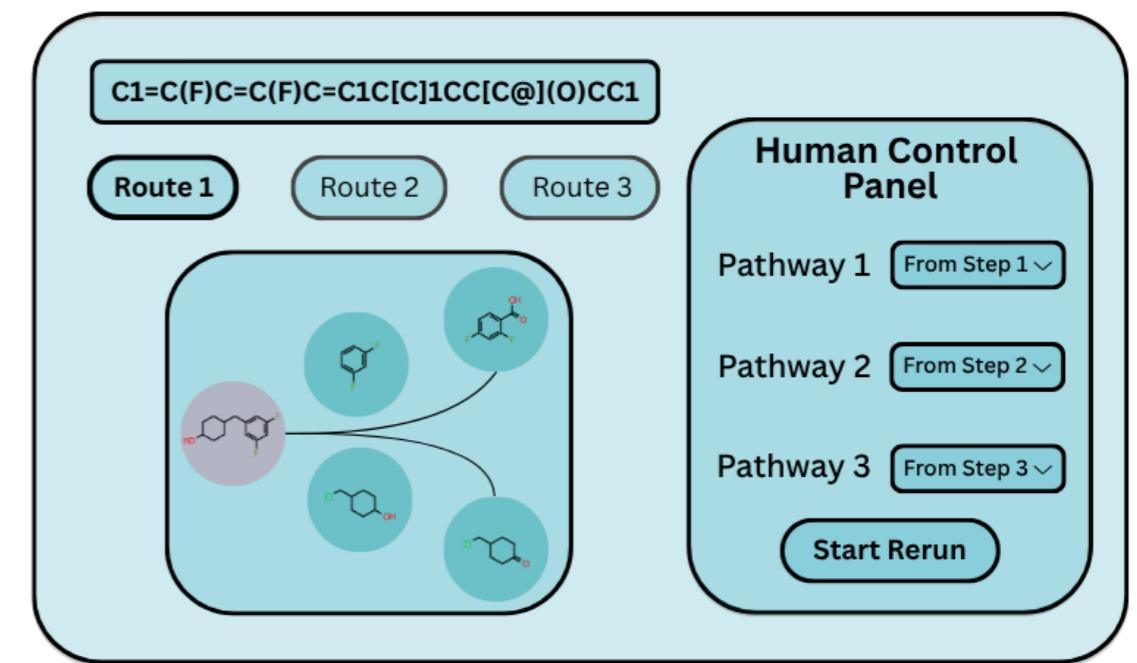


Sathyanarayana, S. V., Hiremath, S. D., Shah, R., Panda, R., Jana, R., Singh, R., ... & Ramsundar, B. (2025). Deepretro: Retrosynthetic pathway discovery using iterative llm reasoning. *arXiv preprint arXiv:2507.07060*.

DEEPRETRO RUNS ON SCALED CLOUD INFRASTRUCTURE WITH HUMAN UI

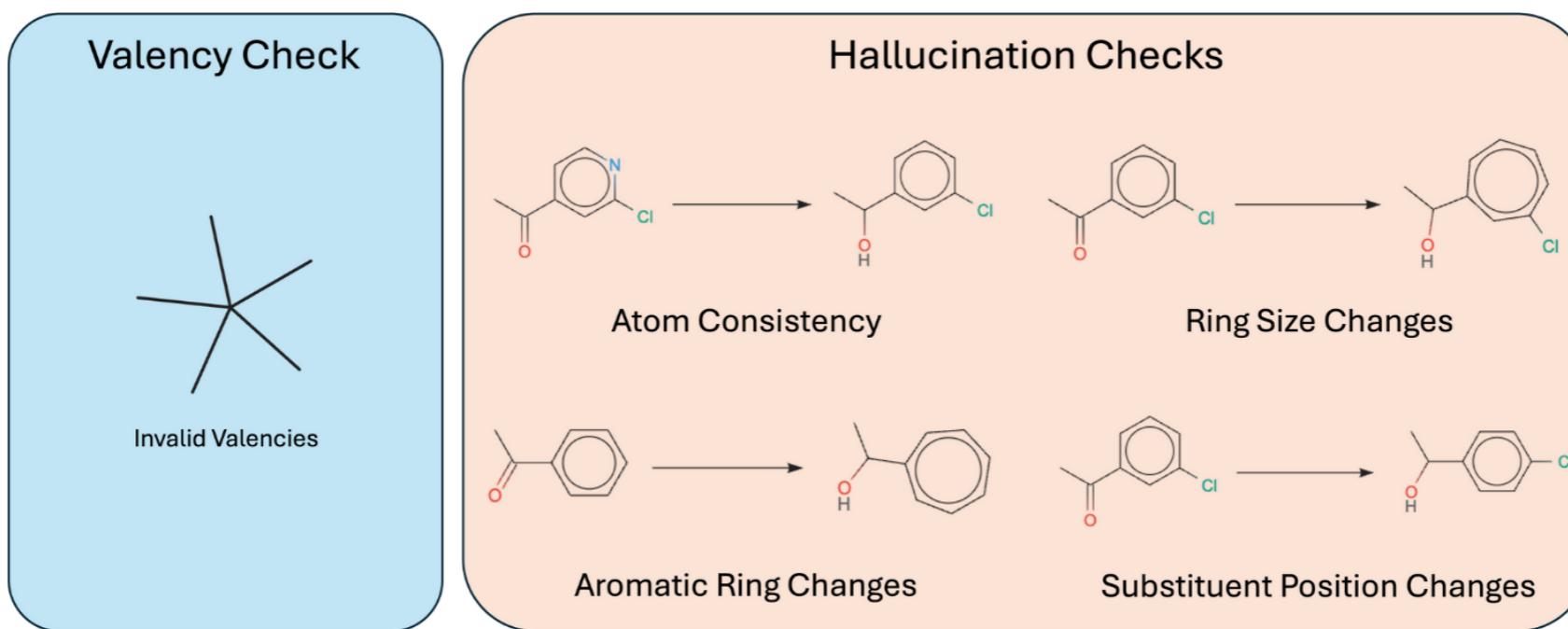
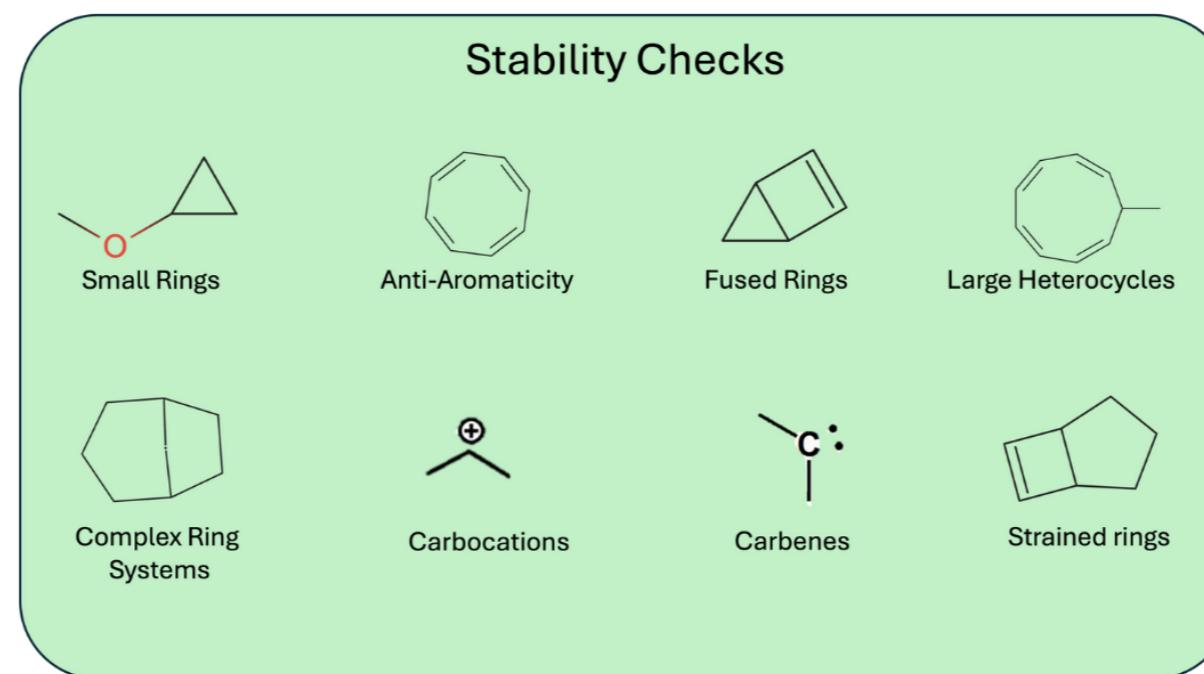


(D) Infrastructure Overview

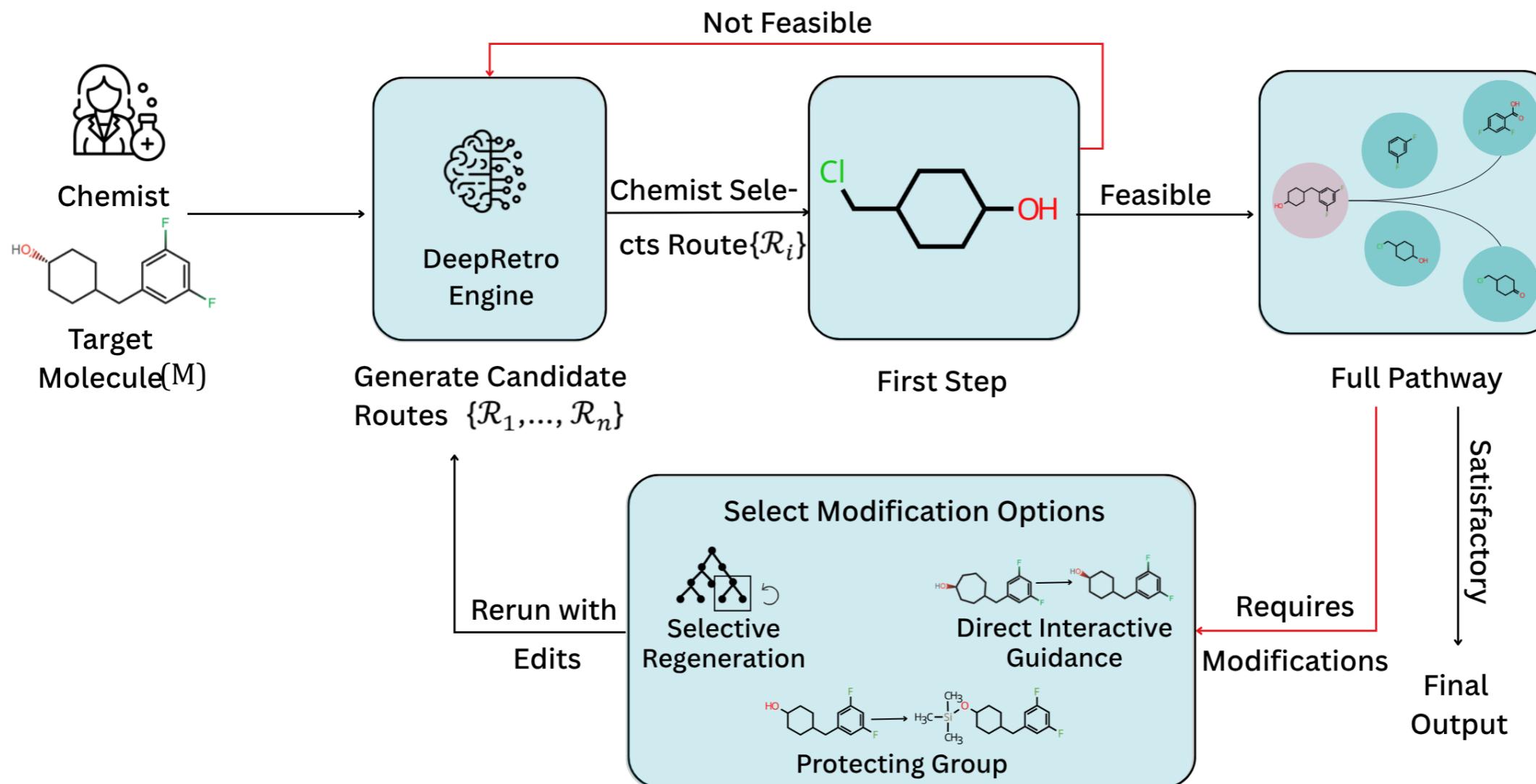


(E) User Interface

AUTOMATED VALIDATION CHECKS ATTEMPT TO CONTROL FOR HALLUCINATIONS



HUMAN CHEMISTS HAVE SEVERAL INTERVENTION POINTS...



THROUGH A USER-FRIENDLY GUI

DeepRetro

Smart Retrosynthesis View Pathway

Advanced Settings

Enter SMILES string Analyze

Note: You are using our recommended settings. Advanced settings can be modified above if needed.

DeepRetro

Smart Retrosynthesis View Pathway

Advanced Settings

Server 1 Settings

Model Version: Pistachio (100+) LLM Model: Claude 4 Opus

Advanced Prompt Stability Checker Hallucination Checker

Server 2 Settings

Model Version: Pistachio (100+) LLM Model: Claude 4 Sonnet

Advanced Prompt Stability Checker Hallucination Checker

Server 3 Settings

Model Version: Pistachio (100+) LLM Model: DeepSeek

Advanced Prompt Stability Checker Hallucination Checker

DeepRetro

Smart Retrosynthesis View Pathway

Advanced Settings

COC1=CC(C(O)C(C)N)=C(O)C=C1 Rerun Analysis

Note: You are using our recommended settings. Advanced settings can be modified above if needed.

Analysis completed

```
{
  "dependencies": {
    "1": []
  },
  "steps": [
    {
      "conditions": {
        "pressure": "Atmospheric pressure (no special pressure conditions required)",
        "solvent": "Anhydrous solvent such as THF, diethyl ether, or dichloromethane",
        "temperature": "0°C to room temperature",
        "time": "1-3 hours"
      }
    }
  ]
}
```

View Pathways

Pathway 1: Complete Pathway 2: Complete Pathway 3: Complete

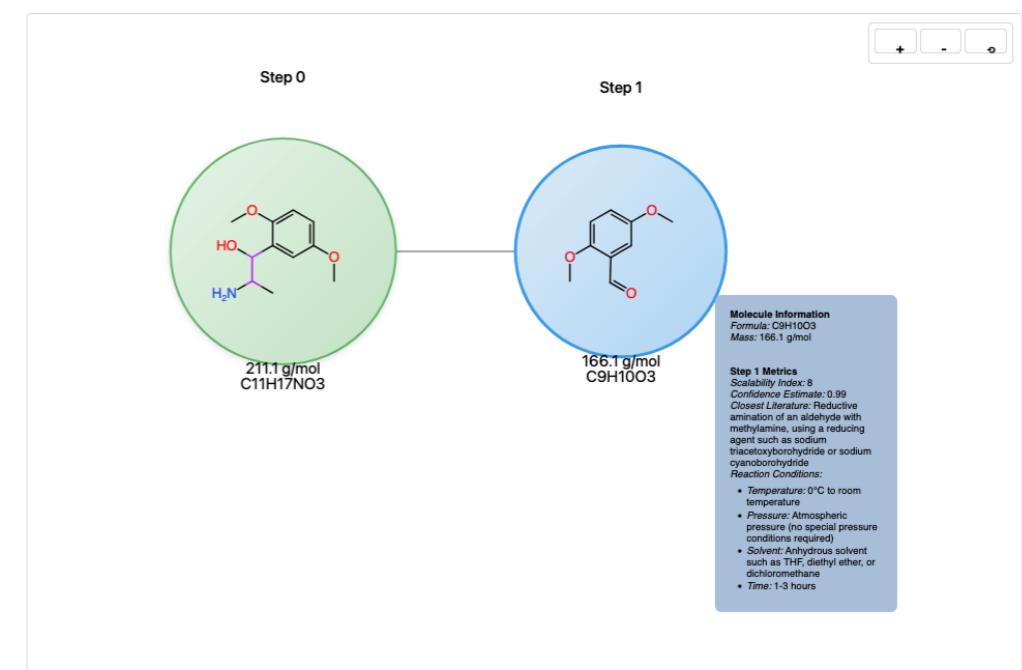
Show Pathway 1 Show Pathway 2 Show Pathway 3

Partial Rerun Analysis

Note: Please use this feature only with steps having a single molecule for an accurate output.

Pathway 3: Select number of steps Edit Data Pathway 2: Select number of steps Edit Data

Pathway 1: Select number of steps Edit Data



DEEPRETRO ACHIEVES STATE OF ART SINGLE STEP (AUTOMATIC) RETROSYNTHESIS

Table 1: This table showcases the Single-Step Retrosynthesis Prediction Accuracy (Top-1) on a 250 subset of USPTO-50k. The numbers reported are out of 250 tested molecules. DeepRetro’s performance depends on the choice of underlying LLM and training dataset for the template-based algorithm. With Claude 4 Opus and Pistachio, DeepRetro outperforms strong baselines like ASKCOS. DeepRetro was run in automatic mode with no human intervention. The “**” represents currently deprecated models

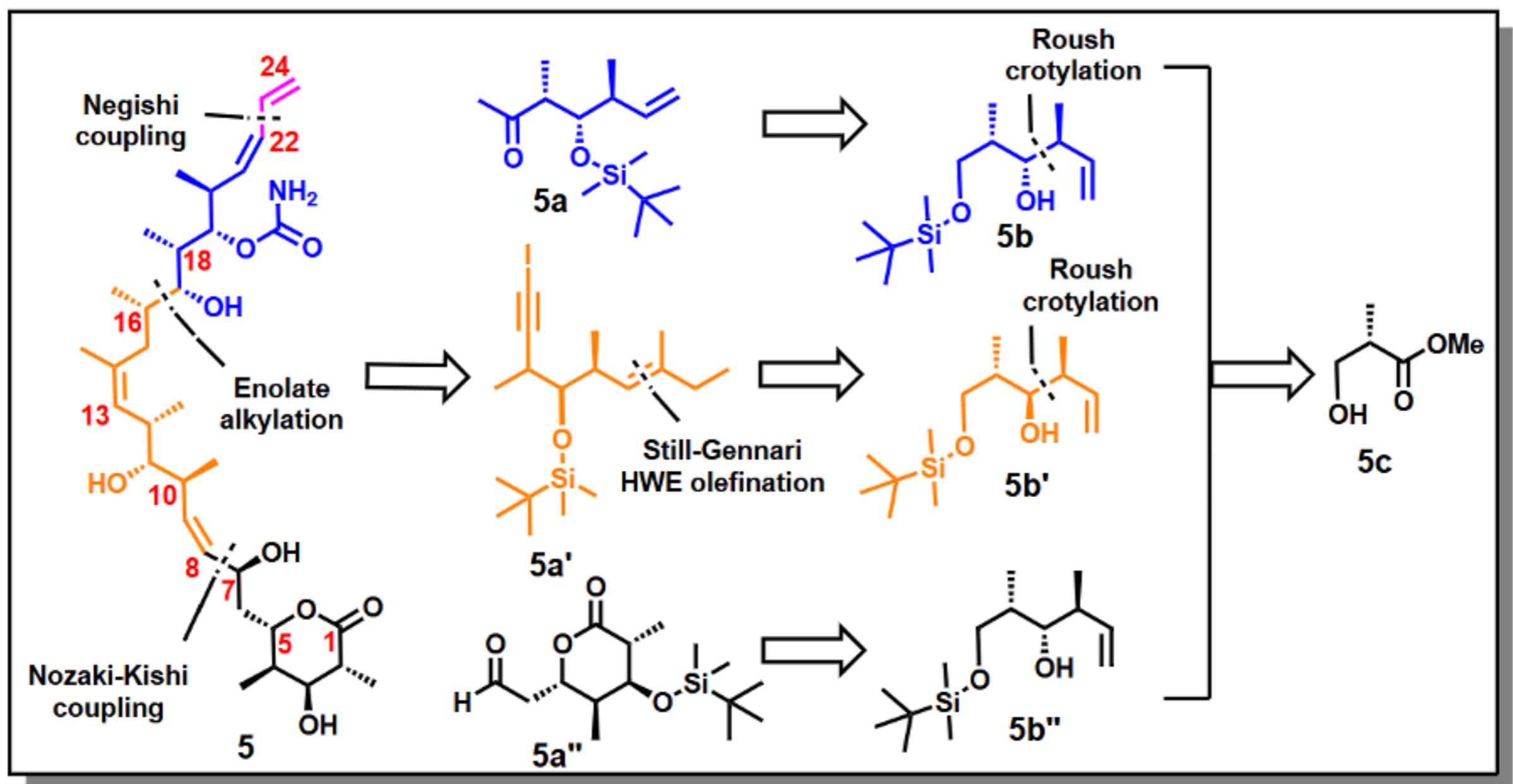
Model	LLM	Dataset	All Accuracy (/250)	Correct Accuracy (/250)	Any Correct (/250)	MaxFrag Accuracy (/250)
ASKCOS	-	Reaxys	105	118	115	
Aizynthfinder	-	Pistachio	73	83	79	
DeepRetro	Claude 3 Opus	Pistachio	93	109	102	
DeepRetro	Claude 3.5 Sonnet	Pistachio	90	102	*	
DeepRetro	Claude 3.7 Sonnet	Pistachio	96	111	105	
DeepRetro	Claude 4 Opus	Pistachio	111	137	126	
DeepRetro	Claude 4 Sonnet	Pistachio	<u>107</u>	<u>129</u>	<u>120</u>	
DeepRetro	DeepSeek R1	Pistachio	95	110	*	
DeepRetro	GPT-5	Pistachio	101	125	118	
Aizynthfinder	-	USPTO	63	70	67	
DeepRetro	Claude 3 Opus	USPTO	80	90	86	
DeepRetro	Claude 3.5 Sonnet	USPTO	82	89	*	
DeepRetro	Claude 3.7 Sonnet	USPTO	85	95	-	
DeepRetro	Claude 4 Opus	USPTO	95	107	102	
DeepRetro	Claude 4 Sonnet	USPTO	<u>93</u>	<u>103</u>	99	
DeepRetro	DeepSeek R1	USPTO	83	92	*	

DEEPRETRO HAS STATE-OF-ART RESULTS ON A MORE REALISTIC DATASET (AUTOMATIC)

Table 3: This table showcases the number of solved molecules of Different Retrosynthesis Models on Drug Hunter 172 Dataset ([58]). The numbers reported are out of 172. DeepRetro was run in automatic mode with no human intervention.

Model	LLM	Dataset	Number of solved molecules (/172)
DeepRetro	Claude 3 Opus	Pistachio	164
DeepRetro	Claude 3.7 Sonnet	Pistachio	160
DeepRetro	Claude 4 Opus	Pistachio	168
DeepRetro	Claude 4 Sonnet	Pistachio	<u>165</u>
DeepRetro	GPT-5	Pistachio	162
DeepRetro	Claude 4 Opus	USPTO	161
Retro* [59]	NA	USPTO	99
PDVN [60]	NA	USPTO	113

DEEPRETRO CREATES PATHWAYS TO COMPLEX MOLECULES (HUMAN-IN-THE-LOOP)



DEEPRETRO IS OPEN-SOURCE AND DOCUMENTED

The screenshot shows a web browser displaying the DeepRetro documentation at deep-forest-sciences-deepretro.readthedocs-hosted.com/en/latest/. The page title is "DeepRetro: Hybrid LLM Retrosynthesis Framework". The main content area contains three diagrams: (A) The DeepRetro Architecture, (B) Molecule Checks, and (C) Human-in-the-Loop Capabilities. The architecture diagram illustrates the flow from a target molecule to retrosynthetic planning using an LLM, with human intervention and vendor databases. The molecule checks diagram shows validation, stability, and hallucination checks. The human-in-the-loop diagram details selective regeneration and direct interactive guidance. The sidebar on the left lists various documentation sections, and the footer includes a "latest" dropdown and a "NONCONFIDENTIAL" note.

DeepRetro

latest

Search docs

Quickstart Guide

Available Models

Installation Guide

User Guide

API Reference

Development Guide

Contributing Guide

Tutorial

DeepRetro: Hybrid LLM Retrosynthesis Framework

View page source

DeepRetro: Hybrid LLM Retrosynthesis Framework

(A) The DeepRetro Architecture

Template Based Methods

LLM

Molecule Checks

Vendor Databases

Human

Not Present

Present

Final Output

(B) Molecule Checks

Validity Checks

Stability Checks

Hallucination Checks

Molecule Checks

(C) Human-in-the-Loop Capabilities

Selective Regeneration

Direct Interactive Guidance

Protecting Group

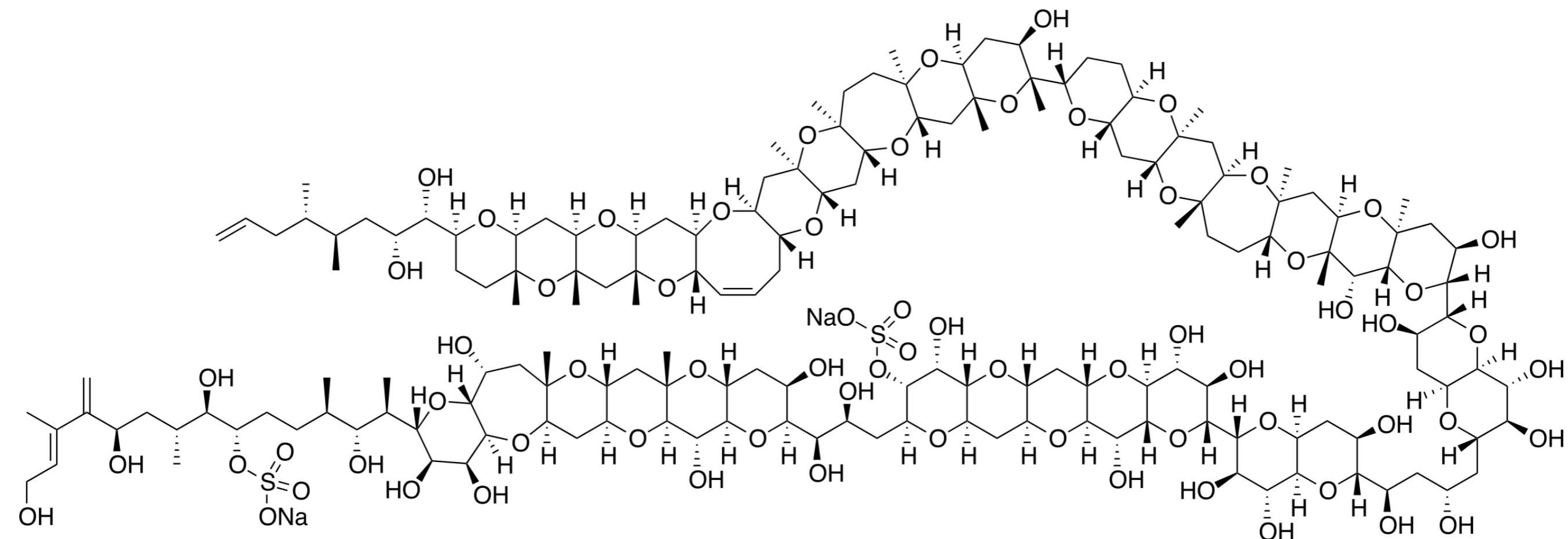
Worker Node 1

Worker Node 2

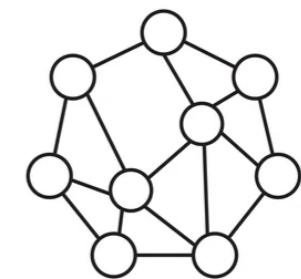
latest

NONCONFIDENTIAL

A PATH TO SOLVE MAITOTOXIN?



CHEMBERTA-3



CHEMBERTA (2020): SELF-SUPERVISION IMPROVES WITH MORE STRUCTURES SEEN (TO 10M)

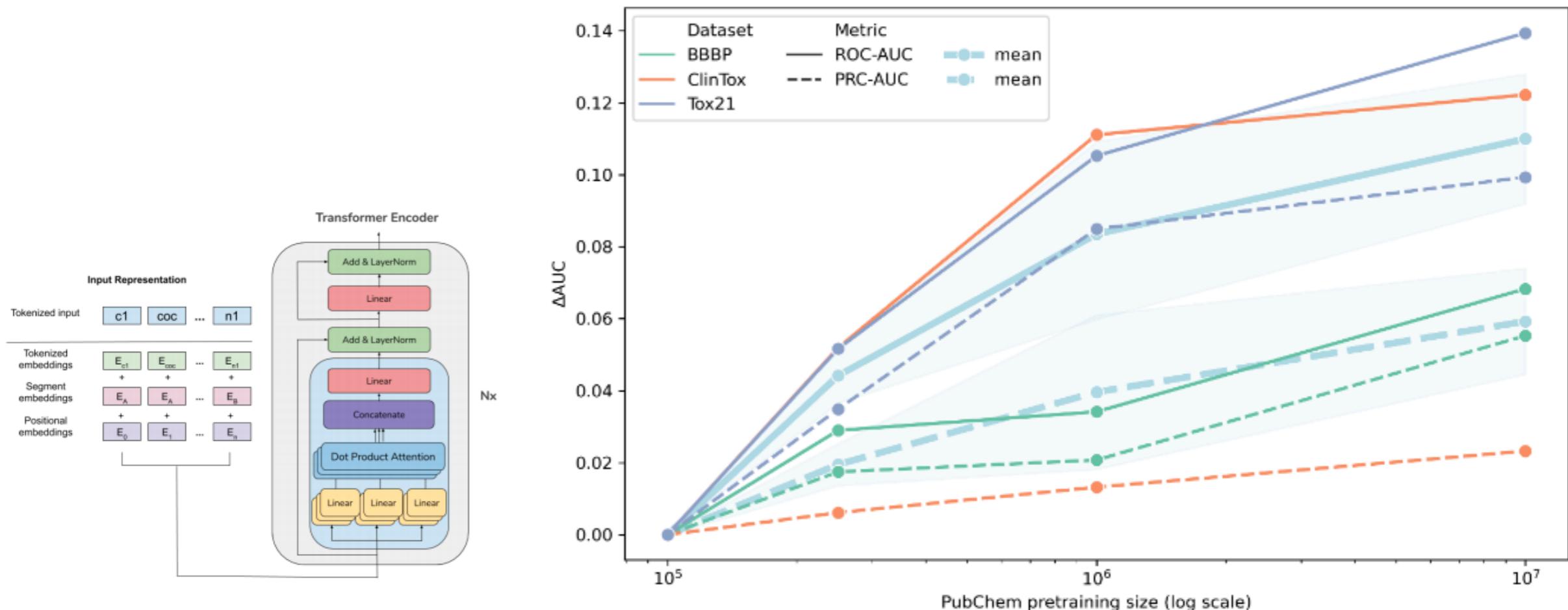


Figure 1: Scaling the pretraining size (100K, 250K, 1M, 10M) produces consistent improvements in downstream task performance on BBBP, ClinTox, and Tox21. (HIV was omitted from this analysis due to resource constraints.) Mean Δ AUC across all three tasks with a 68% confidence interval is shown in light blue.

Chithrananda, S., Grand, G., and Ramsundar, B. "ChemBERTa: large-scale self-supervised pretraining for molecular property prediction." arXiv preprint arXiv:2010.09885 (2020).

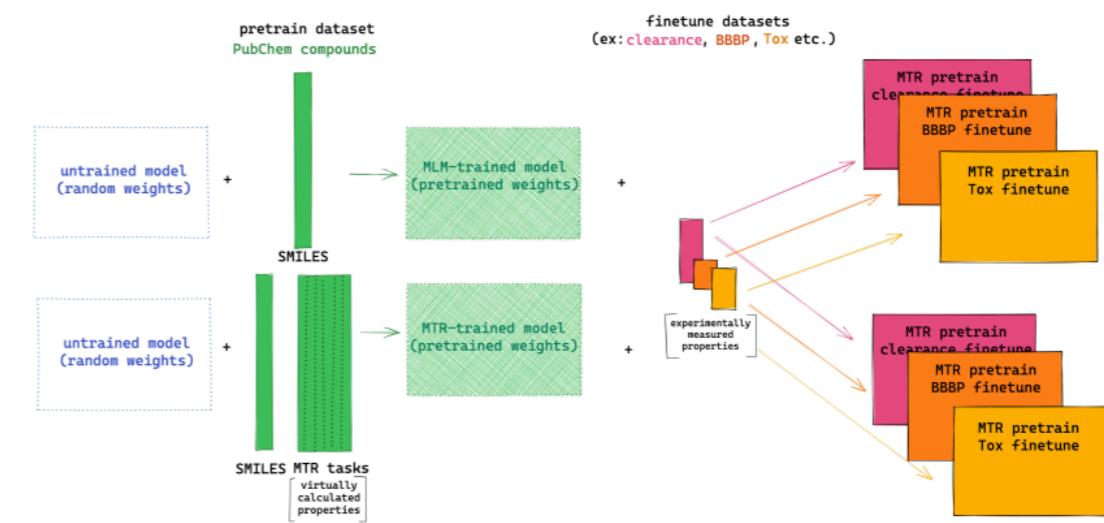
CHEMBERTA-2 (2022): MTR PRETRAINING AND SCALING TO 80M

MLM: Masked Language Model

C1CC1(C(=O)NC2=CC=C(C=C2)OC3=C4C=C(NC(=NC=C3)C(=O)NCCN5CC0CC5)C(=O)NC6=CC=C(C=C6)F
C1CC1(C(=O)NC2=CC=C(C=C2)OC3=C4C=C(NC4=NC=C3)C(=O)NCCN5CC0CC5)C(=O)NC6=CC=C(C=C6)F

MTR: Multi-Task Regression

C1CC1(C(=O)NC2=CC=C(C=C2)OC3=C4C=C(NC4=NC=C3)C(=O)NCCN5CC0CC5)C(=O)NC6=CC=C(C=C6)F
MW, TPSE, FSP3C, #ROTBONDS, etc ...



(a) MLM vs. MTR

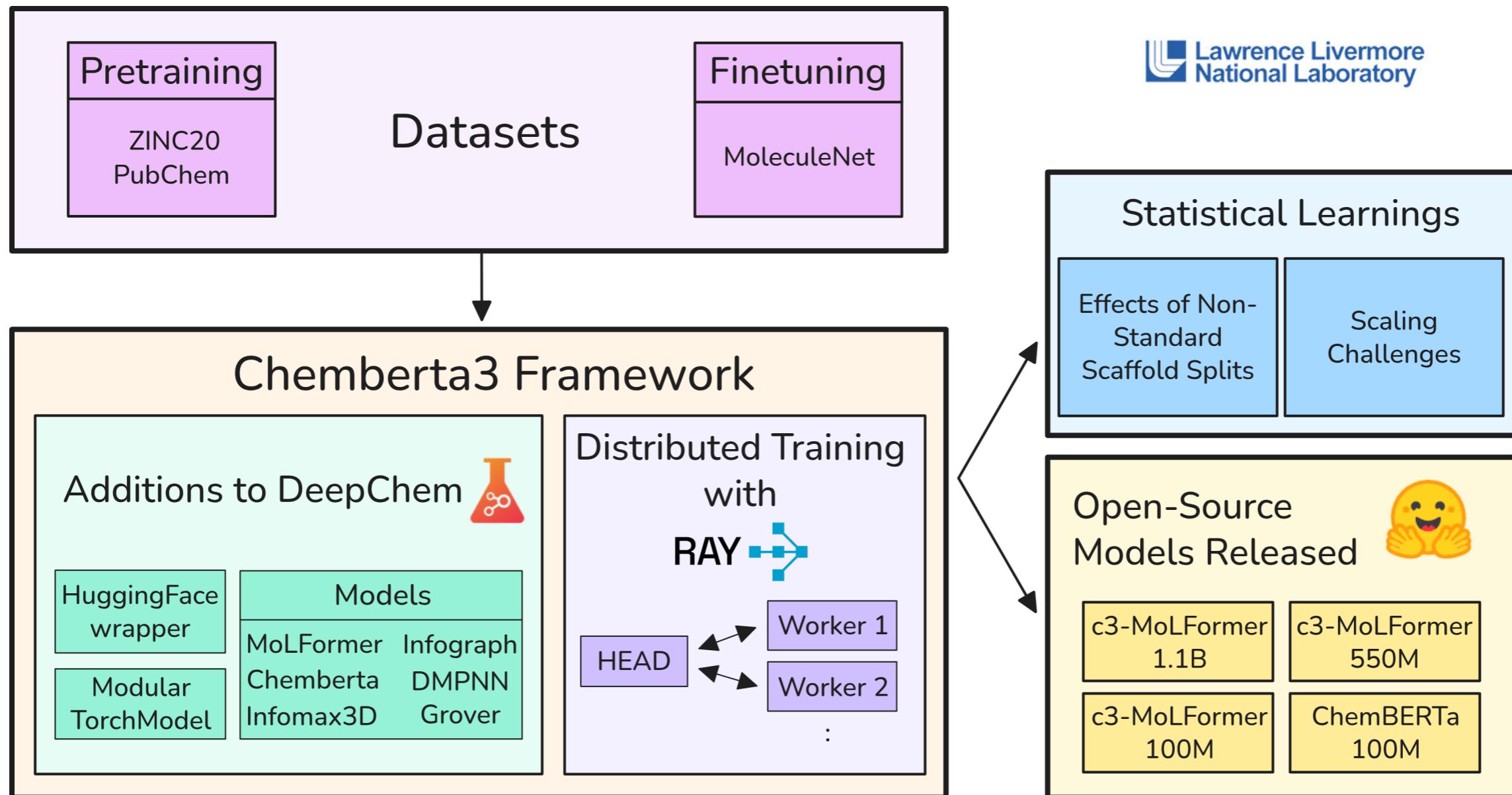
(b) Training pipeline

	BACE RMSE	Clearance RMSE	Delaney RMSE	Lipo RMSE	BACE ROC	BBBP ROC	ClinTox ROC	SR-p53 ROC
D-MPNN	2.253	49.754	1.105	1.212	0.812	0.697	0.906	0.719
RF	1.3178	52.0770	1.7406	0.9621	0.8507	0.7194	0.7829	0.724
GCN	1.6450	51.2271	0.8851	0.7806	0.818	0.676	0.907	0.688
ChemBERTa-1						0.643	0.733	0.728
ChemBERTa-2								
MLM-5M	1.451	54.601	0.946	0.986	0.793	0.701	0.341	0.762
MLM-10M	1.611	53.859	0.961	1.009	0.729	0.696	0.349	0.748
MLM-77M	1.509	52.754	1.025	0.987	0.735	0.698	0.239	0.749
MTR-5M	1.477	50.154	0.874	0.758	0.734	0.742	0.552	0.834
MTR-10M	1.417	48.934	0.858	0.744	0.783	0.733	0.601	0.827
MTR-77M	1.363	48.515	0.889	0.798	0.799	0.728	0.563	0.817

Ahmad, W., Simon, E., Chithrananda, S., Grand, G. and **Ramsundar, B.**, 2022. Chemberta-2: Towards chemical foundation models. *arXiv preprint arXiv:2209.01712*.

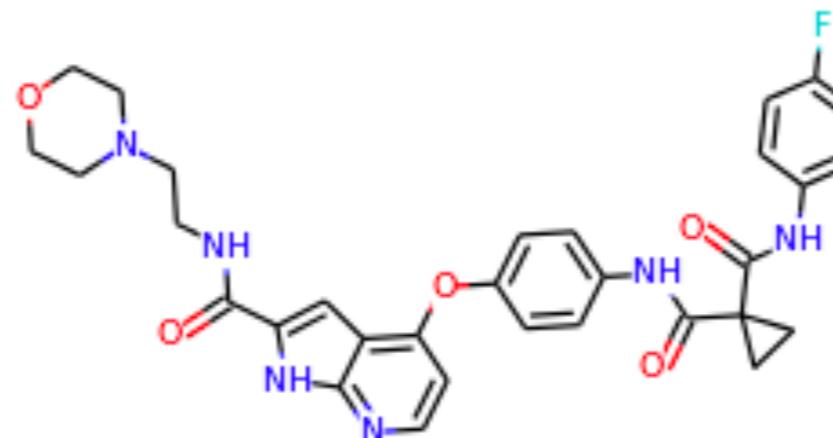
Table 1: Comparison of ChemBERTa-2 pretrained on different tasks (MLM and MTR) and on different dataset sizes (5M, 10M, and 77M), vs. existing architectures on selected MoleculeNet tasks. We report ROC-AUC (\uparrow) for classification and RMSE (\downarrow) for regression tasks. D-MPNNs were trained with the chemprop [20] library. We could not benchmark easily against Grover [11] due to differences in benchmarking procedures.

Chemberta3: Infrastructure to Train up to 1.1B and Benchmark Rigorously

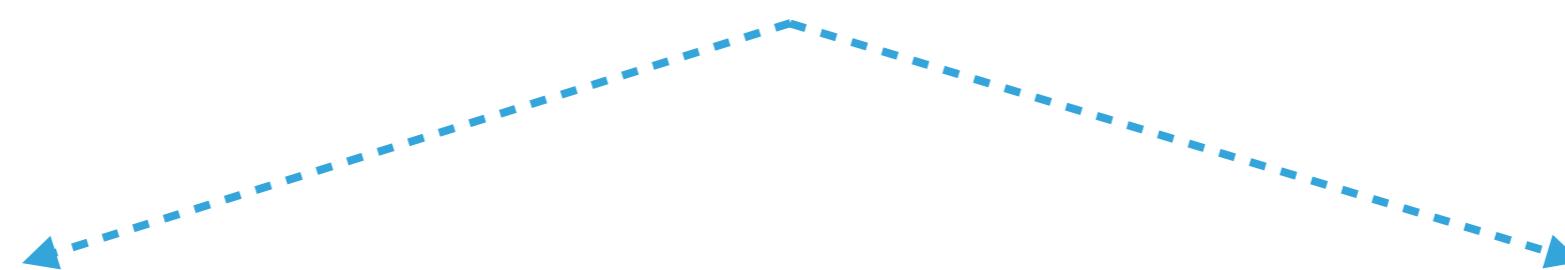


Singh, R., Barsainyan, A. A., Irfan, R., Amorin, C. J., He, S., Davis, T., ... & Ramsundar, B. (2025). ChemBERTa-3: An Open Source Training Framework for Chemical Foundation Models.

DEEPCHEM'S FRAMEWORK FOR PRETRAINING MODELS



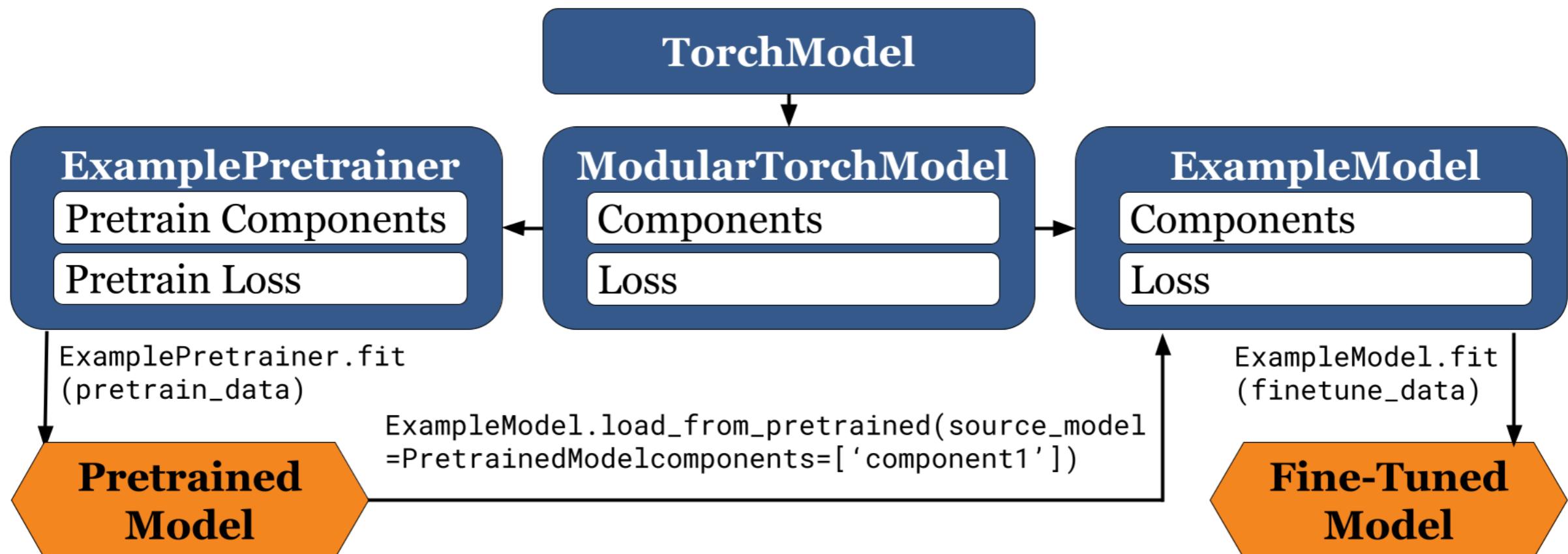
C1CC1(C(=O)NC2=CC=C(C=C2)OC3=C4C=C(NC4=NC=C3)C(=O)NCCN5CCOCC5)C(=O)NC6=CC=C(C=C6)F



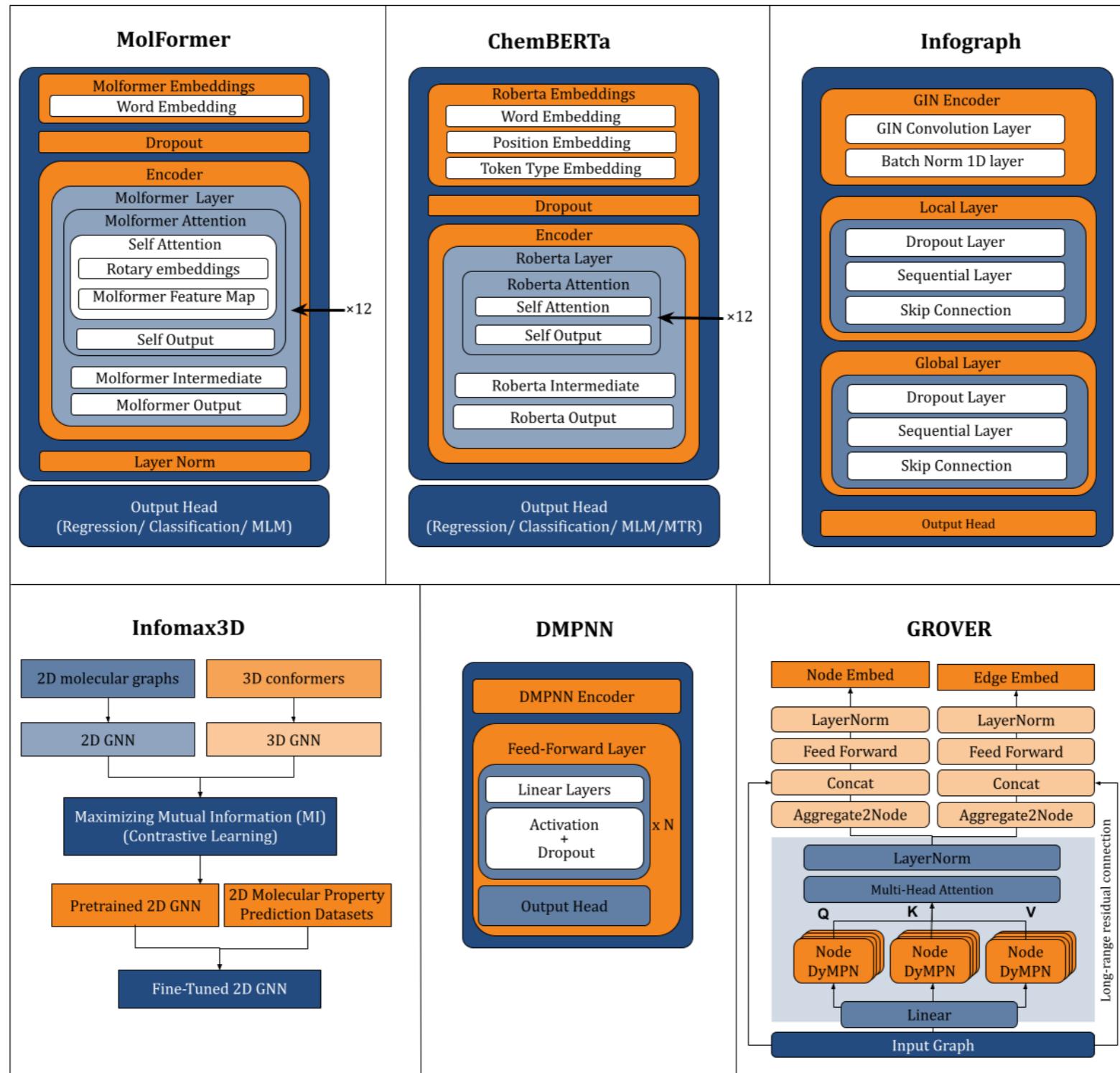
Fill in Missing Atoms and Bonds

Predict Basic Chemical Properties

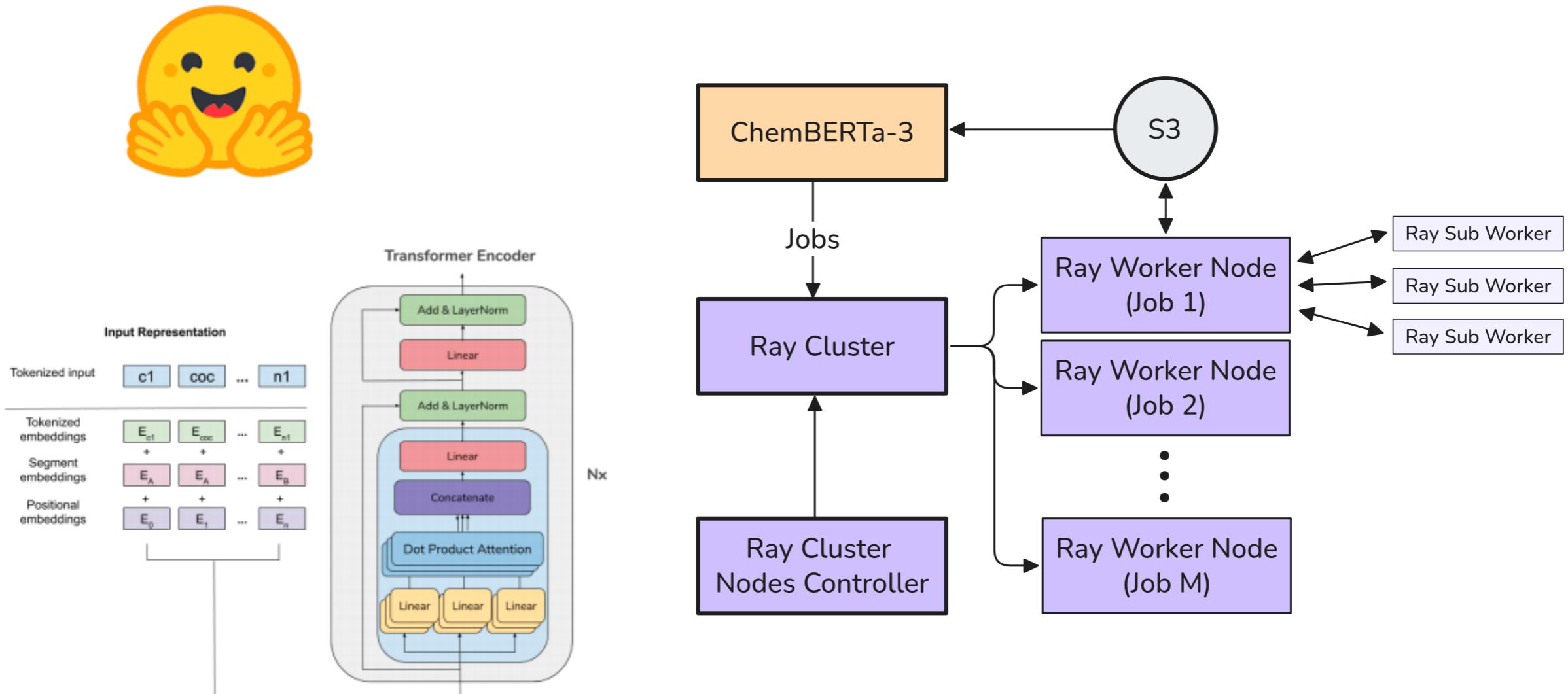
DEEPCHEM'S FRAMEWORK FOR PRETRAINING MODELS



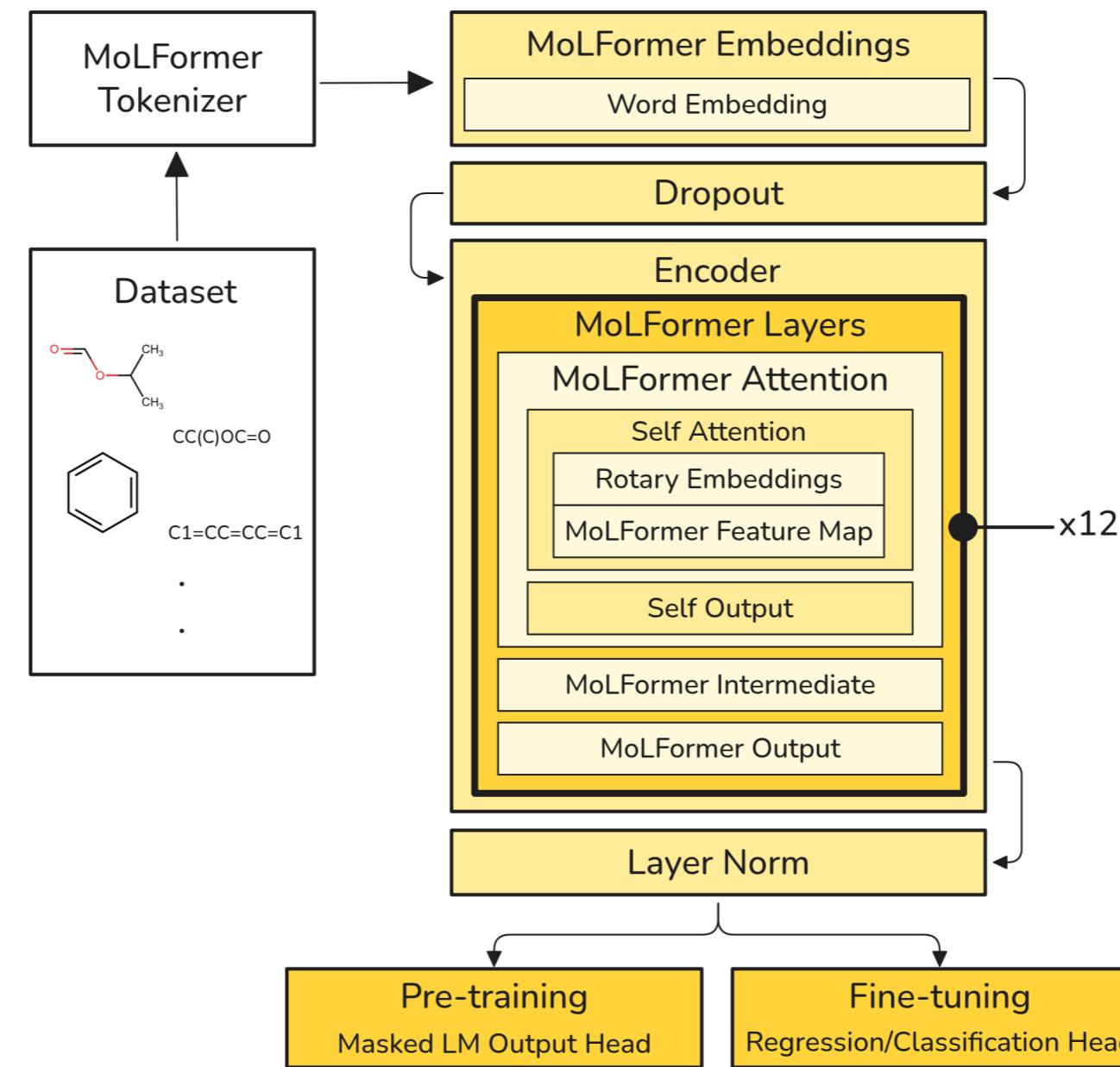
SEVERAL NEW MODELS AND PRETRAINING METHODS ADDED TO DEEPCHEMM



NEW INFRASTRUCTURE TO INTEGRATE DEEPCHEM, HUGGINGFACE, AND RAY



HIGHLIGHT: MOLFORMER ARCHITECTURE



Ross, J., Belgodere, B., Chenthamarakshan, V., Padhi, I., Mroueh, Y., & Das, P. (2022). Large-scale chemical language representations capture molecular structure and properties. *Nature Machine Intelligence*, 4(12), 1256-1264.

MOLFORMER SCAFFOLD SPLITS ARE EASIER THAN DEEPCHEM SCAFFOLD SPLITS!

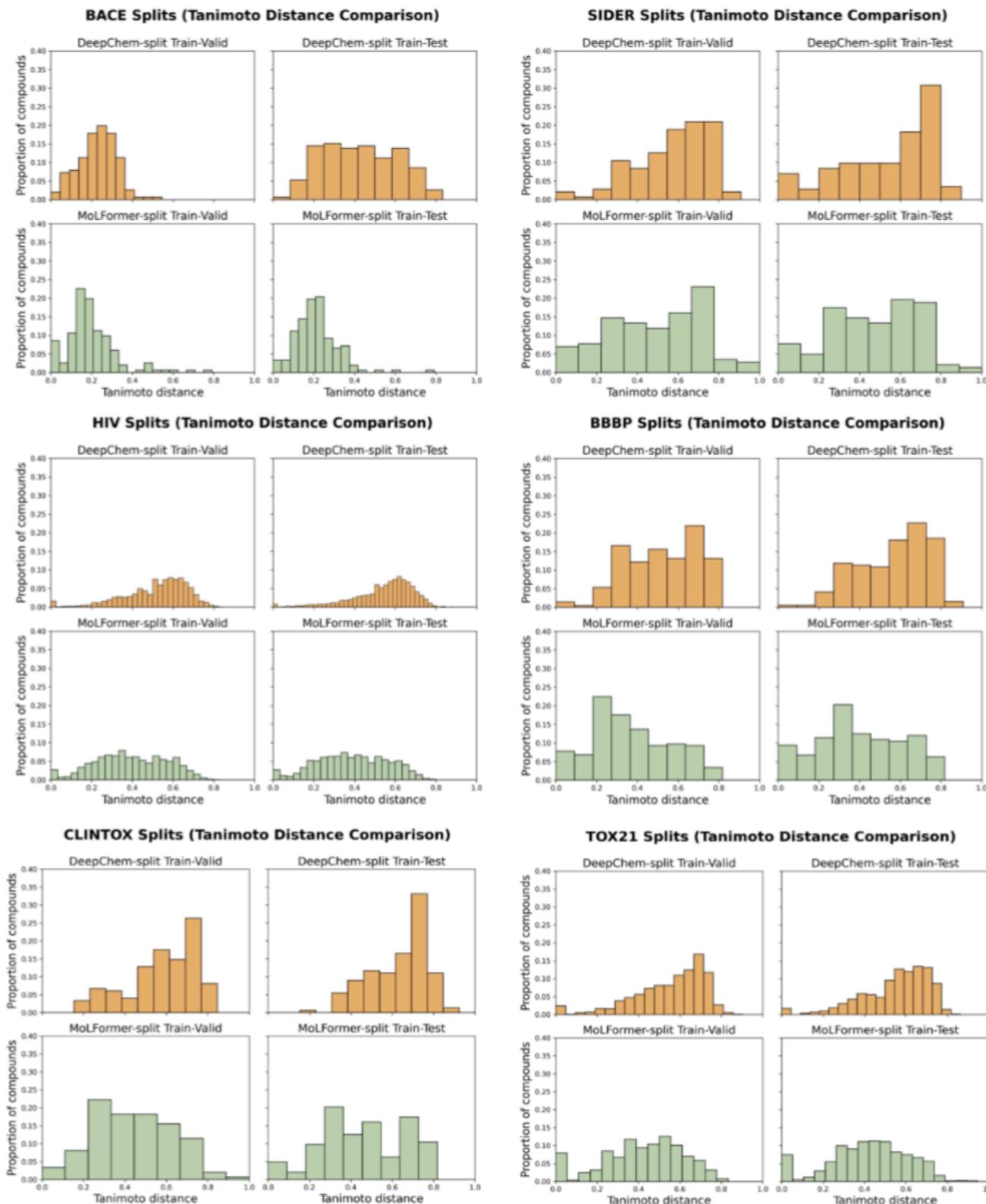


Fig. 7 Histograms of Minimum Tanimoto Distance (MTD) distributions comparing validation and test sets across multiple MoleculeNet classification datasets: BACE, SIDER, HIV, BBBP, CLINTOX and TOX21.

1.1B MODELS GENERALLY OUTPERFORM SMALLER MODELS

Table 3 The tables compare different baseline models (RF, GCN, DMPNN, Infograph, Infomax3D, and Grover) to the transformer architecture models, ChemBERTa and MoLFormer, on various **classification datasets**, in block 1 and **regression datasets**, in block 2 and report ROC-AUC scores (Higher is better) and RMSE (Lower is better) respectively. We used the **deepchem scaffold splitter** to split the datasets provided by MoleculeNet. Here, c3-MoLFormer indicates that the MoLFormer model is trained using Chemberta3 infrastructure and MoLFormer-LHPC is trained using the HPC clusters. (green=top ranked, yellow=second rank)

Classification Datasets (Higher is better)

Dataset Tasks	BACE ↑ 1	BBBP ↑ 1	TOX21 ↑ 12	HIV ↑ 1	SIDER ↑ 27	CLINTOX ↑ 2
Random Forest	0.866 ± 0.004	0.694 ± 0.013	0.674 ± 0.007	0.794 ± 0.007	0.630 ± 0.002	0.689 ± 0.011
GCN	0.778 ± 0.008	0.642 ± 0.011	0.710 ± 0.005	0.759 ± 0.007	0.613 ± 0.010	0.870 ± 0.020
DMPNN	0.626 ± 0.004	0.661 ± 0.001	0.706 ± 0.001	0.752 ± 0.007	0.524 ± 0.029	0.642 ± 0.005
Infograph-250K	0.739 ± 0.019	0.639 ± 0.054	0.684 ± 0.010	0.755 ± 0.007	0.627 ± 0.010	0.845 ± 0.004
Infomax3D-250K	0.658 ± 0.008	0.624 ± 0.020	0.645 ± 0.006	0.704 ± 0.056	0.588 ± 0.010	0.860 ± 0.023
Grover-250K	0.825 ± 0.006	0.674 ± 0.006	0.692 ± 0.003	0.759 ± 0.002	0.619 ± 0.010	0.642 ± 0.020
ChemBERTa-MLM-100M	0.781 ± 0.019	0.700 ± 0.027	0.718 ± 0.011	0.740 ± 0.013	0.611 ± 0.002	0.979 ± 0.022
c3-MoLFormer-1.1B	0.819 ± 0.018	0.735 ± 0.019	0.723 ± 0.012	0.762 ± 0.005	0.618 ± 0.005	0.839 ± 0.013
MoLFormer-LHPC	0.887 ± 0.004	0.908 ± 0.013	0.791 ± 0.014	0.750 ± 0.003	0.622 ± 0.007	0.993 ± 0.004

Regression Datasets (Lower is better)

Dataset	ESOL ↓	FREESOLV ↓	LIPO ↓	BACE ↓	CLEARANCE ↓
Random Forest	1.697 ± 0.005	1.138 ± 0.017	0.963 ± 0.003	1.249 ± 0.011	51.683 ± 0.402
GCN	1.002 ± 0.034	0.624 ± 0.031	0.879 ± 0.071	1.259 ± 0.028	54.599 ± 1.984
DMPNN	1.068 ± 0.033	0.596 ± 0.033	0.690 ± 0.015	1.146 ± 0.100	50.974 ± 0.542
Infograph-250K	1.410 ± 0.196	0.988 ± 0.063	0.898 ± 0.012	1.440 ± 0.137	92.646 ± 22.630
Infomax3D-250K	1.467 ± 0.013	0.623 ± 0.024	0.787 ± 0.022	1.440 ± 0.174	58.270 ± 0.642
Grover-250K	1.845 ± 0.037	1.038 ± 0.008	0.816 ± 0.027	1.563 ± 0.058	64.452 ± 0.287
ChemBERTa-MLM-100M	0.920 ± 0.011	0.536 ± 0.016	0.758 ± 0.013	1.011 ± 0.038	51.582 ± 3.079
c3-MoLFormer-1.1B	0.829 ± 0.019	0.572 ± 0.023	0.728 ± 0.016	1.094 ± 0.126	52.058 ± 2.767
MoLFormer-LHPC	0.848 ± 0.031	0.683 ± 0.040	0.895 ± 0.080	1.201 ± 0.100	45.74 ± 2.637

BUT, STARTING TO HIT DIMINISHING RETURNS WITH SCALE?

Table 4 This table compares the ChemBERTa and MoLFormer models pretrained on ZINC and PubChem datasets of varying sizes on various **classification datasets** and reports ROC AUC scores (Higher is better). We used **deepchem scaffold splits** and pretrained ChemBERTa models on the ZINC 10M and 100M dataset.

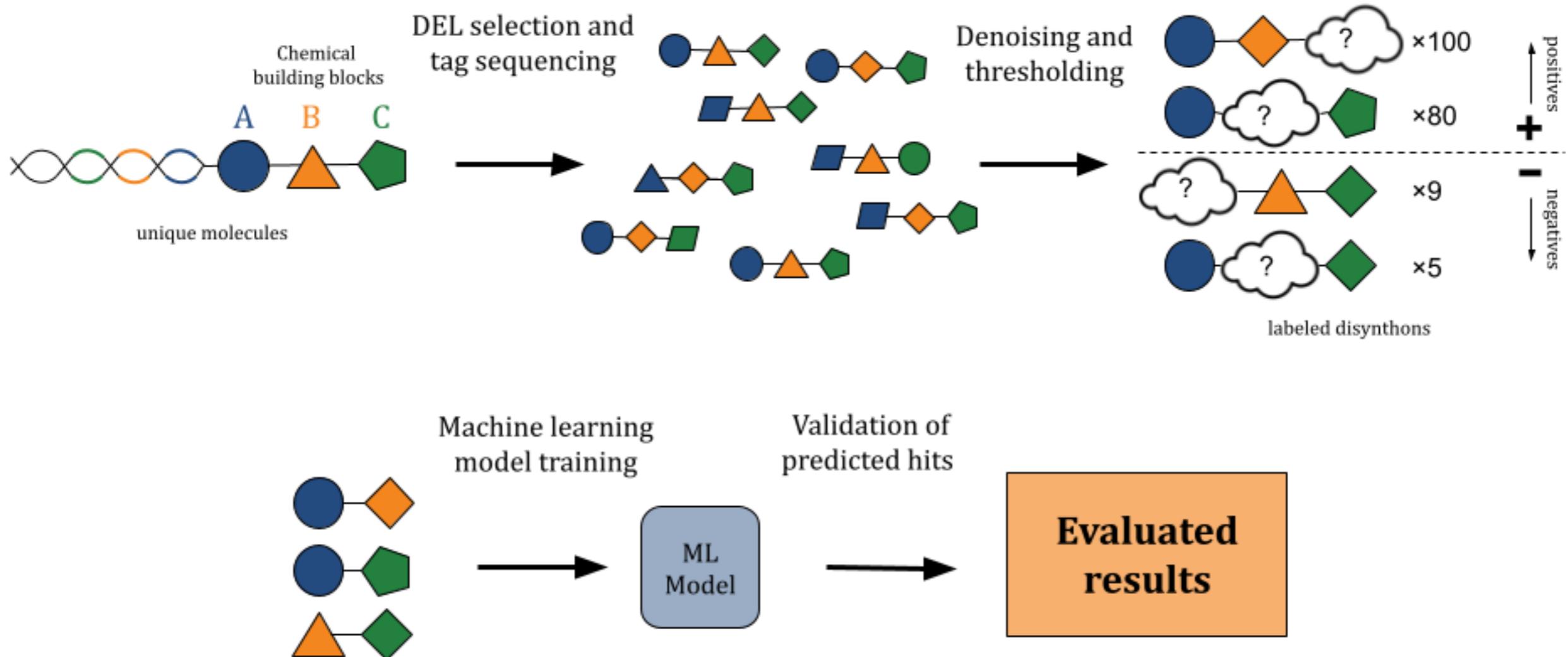
Dataset Tasks	BACE↑ 1	BBBP↑ 1	TOX21↑ 12	HIV↑ 1	SIDER↑ 27	CLINTOX↑ 2
ChemBERTa-MLM-10M	0.773 ± 0.010	0.715 ± 0.006	0.713 ± 0.014	0.725 ± 0.017	0.616 ± 0.010	0.983 ± 0.010
ChemBERTa-MLM-100M	0.781 ± 0.019	0.700 ± 0.027	0.718 ± 0.011	0.747 ± 0.009	0.629 ± 0.023	0.979 ± 0.022
c3-MoLFormer-10M	0.776 ± 0.031	0.715 ± 0.021	0.718 ± 0.003	0.711 ± 0.014	0.618 ± 0.005	0.847 ± 0.024
c3-MoLFormer-100M	0.809 ± 0.019	0.730 ± 0.016	0.729 ± 0.005	0.747 ± 0.017	0.631 ± 0.009	0.854 ± 0.036
c3-MoLFormer-550M	0.812 ± 0.017	0.742 ± 0.020	0.726 ± 0.002	0.659 ± 0.140	0.594 ± 0.007	0.856 ± 0.020
c3-MoLFormer-1.1B	0.819 ± 0.018	0.735 ± 0.019	0.723 ± 0.012	0.762 ± 0.005	0.618 ± 0.005	0.839 ± 0.013
MoLFormer-LHPC	0.887 ± 0.004	0.908 ± 0.013	0.791 ± 0.014	0.750 ± 0.003	0.622 ± 0.007	0.993 ± 0.004

CHEMBERTA-3 CODE AND MODELS ARE FULLY OPEN SOURCED

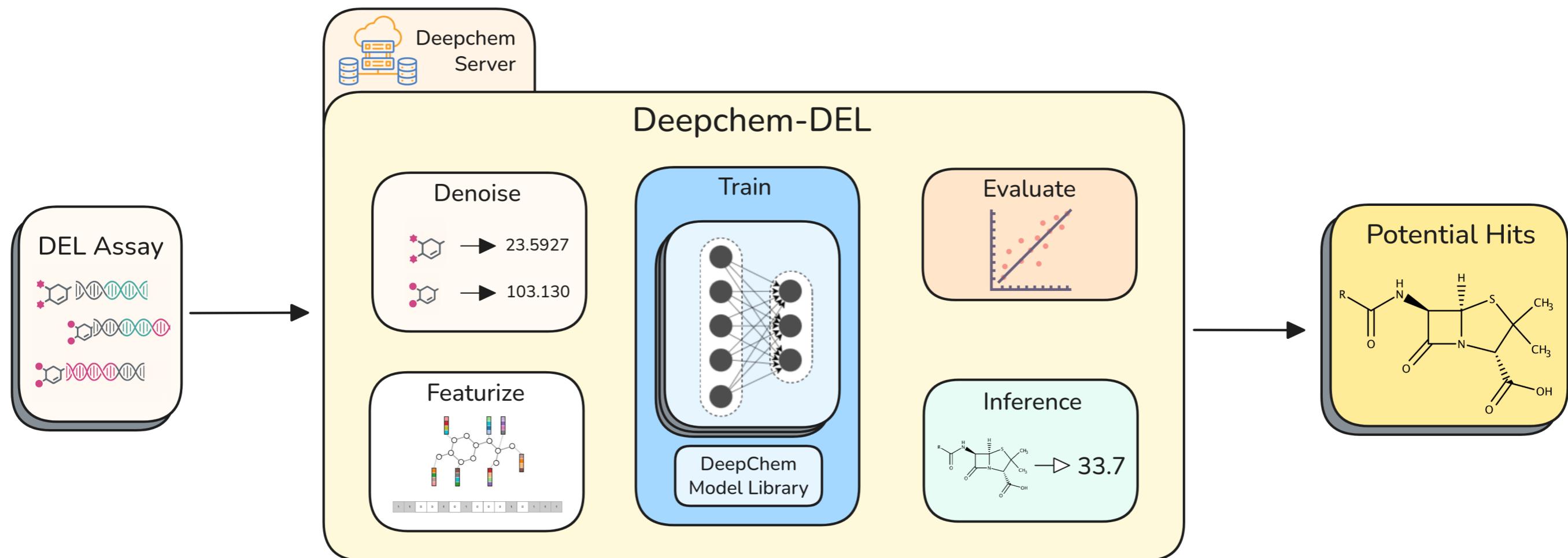
The image shows a dual-monitor setup. The left monitor displays a GitHub repository page for 'chemberta3' under the 'deepforestsci' organization. A prominent message box states: 'Your main branch isn't protected. Protect this branch from force pushing or deletion, or require status checks before merging. [View documentation.](#)' The right monitor displays the 'DeepChem' project page on 'huggingface.co'. The page features the 'DeepChem' logo and navigation links for 'Models', 'Datasets', 'Spaces', 'Community', 'Docs', 'Enterprise', and 'Pricing'. Below the navigation, sections include 'AI & ML interests' (describing the project's goal to democratize deep learning for science), 'Recent Activity' (listing contributions from users like 'ARY2260' and 'riya2801'), and 'Team members' (showing a grid of profile icons). A list of models is displayed on the right, including 'DeepChem/ChemBERTa-100M-MLM', 'DeepChem/MoLFormer-c3-1.1B', 'DeepChem/MoLFormer-c3-550M', 'DeepChem/ChemBERTa-77M-MLM', 'DeepChem/ChemBERTa-5M-MLM', 'DeepChem/ChemBERTa-5M-MTR', 'DeepChem/ChemBERTa-77M-MTR', 'DeepChem/ChemBERTa-SM-MTR-199', 'DeepChem/ChemBERTa-LG-015', and 'DeepChem/ChemBERTa-SM-015'. Each model entry includes a preview image, name, description, and update information.

DEEPCHEM-DEL

MACHINE LEARNING FOR DNA ENCODED LIBRARIES (DEL) IS POWERFUL

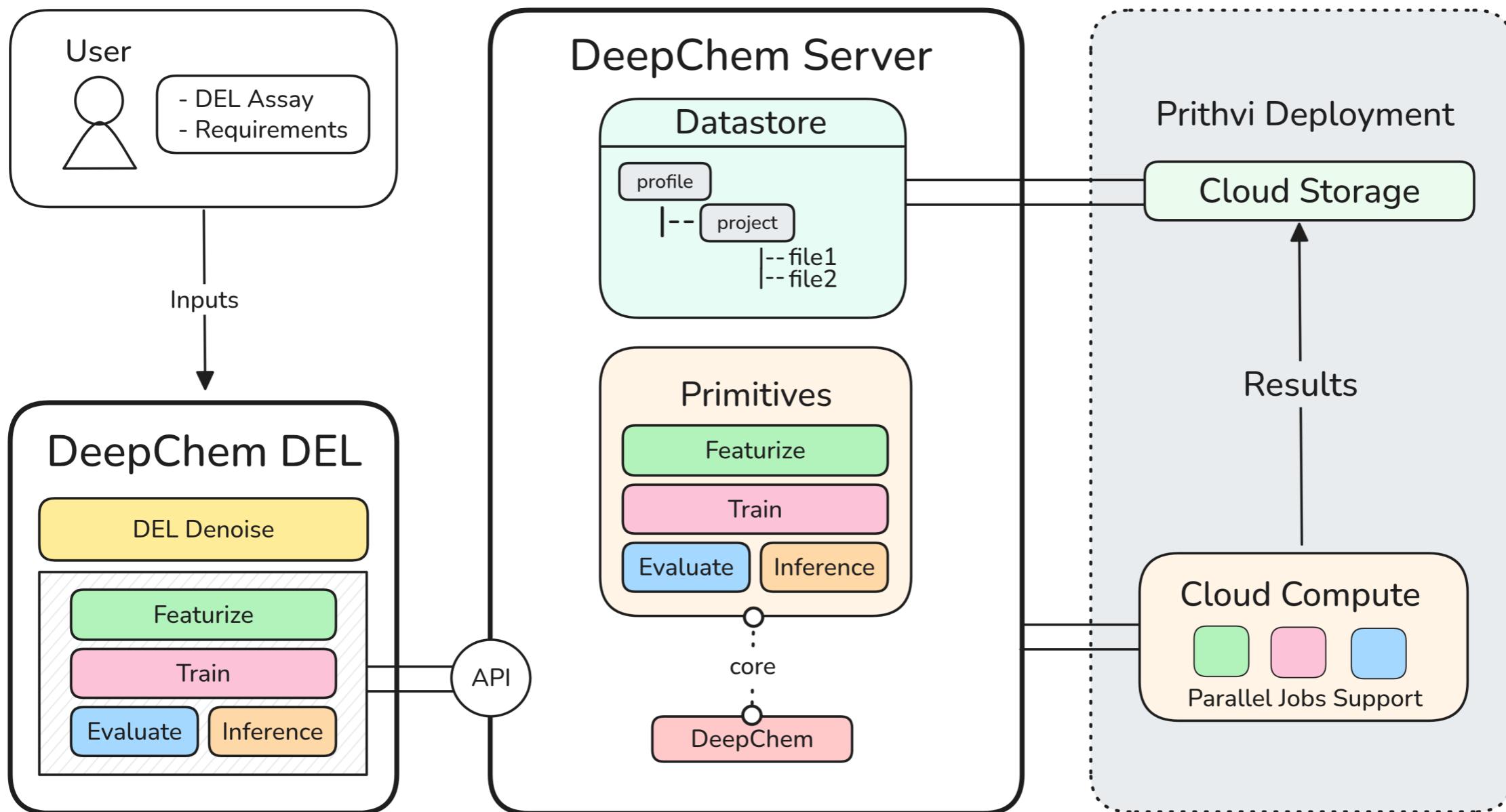


DEEPCHEM-DEL: A FRAMEWORK FOR BUILDING DEL MODELS

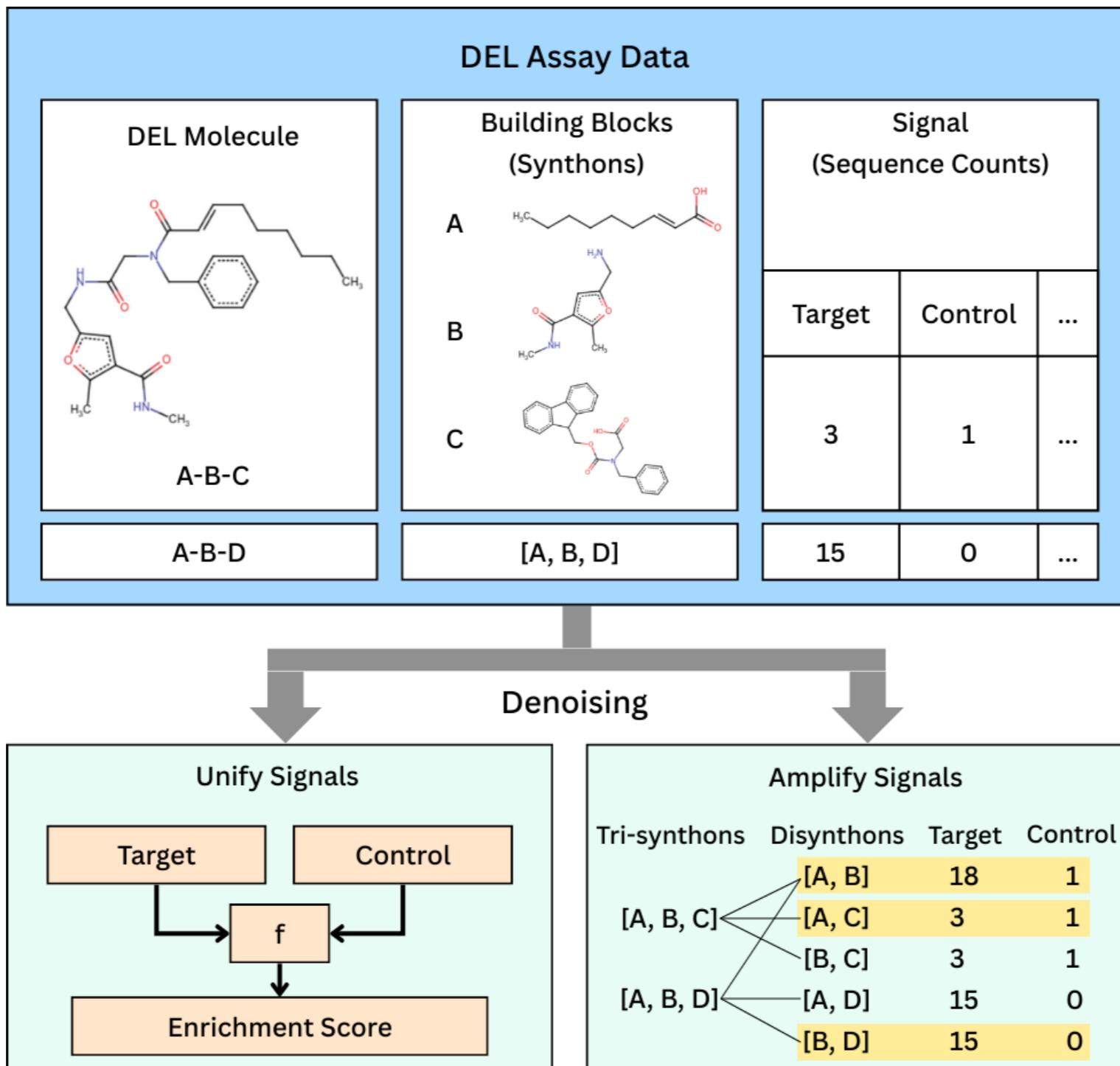


Barsainyan, A. A., Singh, R., Mengade, A. P., Irfan, R., & Ramsundar, B. (2025). DeepChem-DEL: An Open Source Framework for Reproducible DEL Modeling and Benchmarking.

DEEPCHEM- SERVER FACILITATES LARGE SCALE CHEMOINFORMATICS

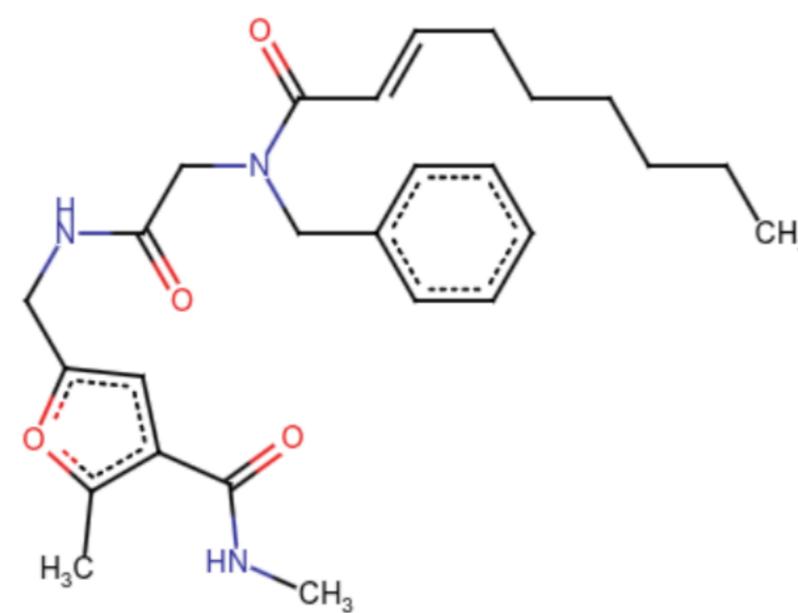


DEEPCHEM-DEL SUPPORTS MULTIPLE DENOISING STRATEGIES



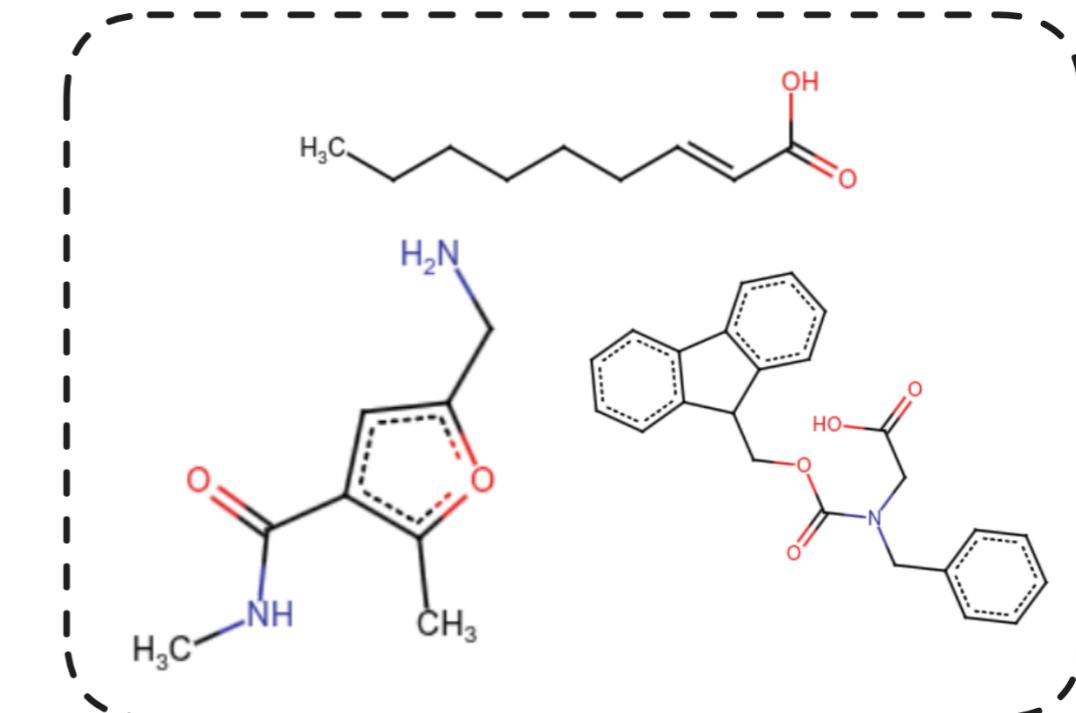
CONNECTED SYNTHONS VERSUS DISJOINTED SYNTHONS

Connected Synthons Graph
(DEL Molecule)



CCCCCCC/C=C/C(=O)N(CC(=O)NCc1cc(C(=O)NC)c(C)o1)Cc1ccccc1

Disjointed Synthons Graph



CCCCCCC/C=C/C(=O)N(CC(=O)NCc1cc(C(=O)NC)c(C)o1)Cc1ccccc1
OC(=O)CN(Cc1ccccc1)C(=O)OCC1c2ccccc2-c2ccccc12
CNC(=O)c1cc(CN)oc1C.

DEEPCHEM-DEL CAN SIGNIFICANTLY IMPROVE PREDICTIVE POWER

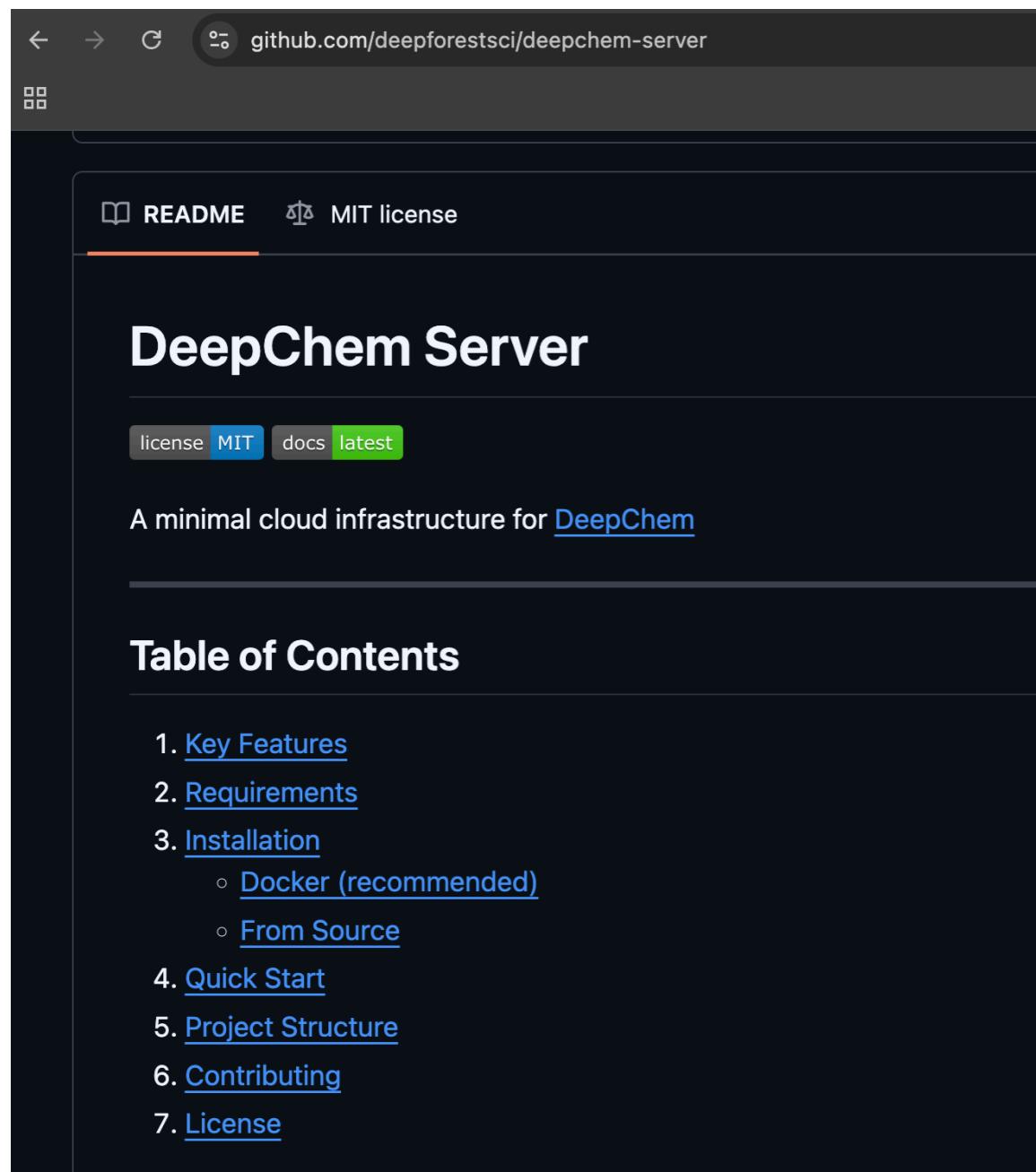
Table 1: Performance of unified regression models for amplified (di) and non-amplified (tri) on the DDR1 kinase target under random split evaluation. Models were trained jointly across targets to predict enrichment values. Results are reported as test RMSE (lower is better) and negative Spearman correlation for held-out in-library and held-out extended library sets.

Input Type	Models	Test RMSE↓	Heldout In-Library		Heldout Extended	
			on-DNA↑	off-DNA↑	on-DNA↑	off-DNA↑
Di	RF	1.677 ± 0.001	-0.207 ± 0.011	-0.139 ± 0.007	-0.021 ± 0.021	-0.104 ± 0.012
	GCN	1.874 ± 0.234	0.361 ± 0.170	0.134 ± 0.041	0.289 ± 0.230	0.086 ± 0.026
Tri	RF	0.671 ± 0.037	0.714 ± 0.014	0.399 ± 0.017	0.665 ± 0.006	0.362 ± 0.017
	GCN	0.462 ± 0.212	0.465 ± 0.093	0.233 ± 0.055	0.489 ± 0.058	0.197 ± 0.057
	RF (KinDEL)	0.685 ± 0.011	0.578 ± 0.034	0.267 ± 0.022	0.608 ± 0.021	-
	GIN (KinDEL)	0.454 ± 0.012	0.572 ± 0.044	0.283 ± 0.028	0.579 ± 0.037	-

Table 3: The table summarizes the performance of the Unified Trisynthon Regression task on the DDR1 dataset, comparing results obtained under multiple DEL assay training set sizes, architecture choices, and hyperparameter selections.

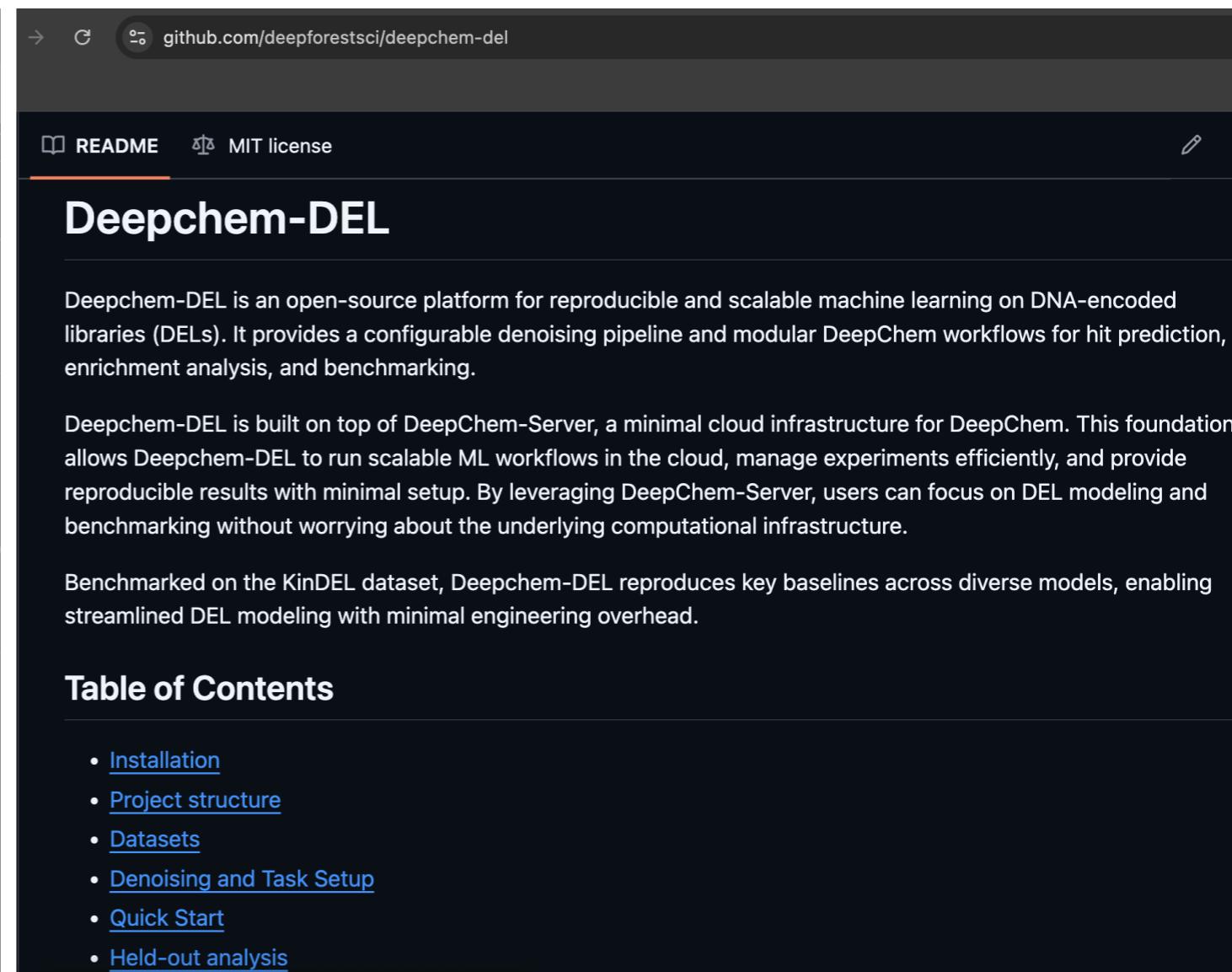
Model-data configs	Heldout in-Library		Heldout Extended	
	on-DNA↑	off-DNA↑	on-DNA↑	off-DNA↑
GCN-128hf-1M-100e	0.465 ± 0.093	0.233 ± 0.055	0.489 ± 0.058	0.197 ± 0.057
DMPNN-1M-100e	0.694	0.296	0.711	0.255
GCN-256hf-1M-30e	0.481	0.217	0.537	0.198
GCN-256hf-1M-100e	0.552	0.258	0.544	0.216
GCN-128hf-5M-10e	0.137	-0.08	0.027	-0.119
GCN-256hf-5M-10e	0.167	0.049	-0.059	0.046
GCN-128hf-5M-30e	0.078	-0.048	0.069	-0.098
GCN-256hf-5M-30e	0.193	0.067	-0.007	0.067
GCN-256hf-5M-50e	0.373	0.188	0.402	0.197
GCN-128hf-11M-10e	0.073	-0.078	0.406	-0.073

DEEPCHEM-DEL IS OPEN-SOURCED



The screenshot shows the GitHub repository page for `github.com/deepforestsci/deepchem-server`. The page has a dark theme. At the top, there are navigation icons and the repository URL. Below the header, there are two buttons: "README" and "MIT license", with "README" being underlined. The main content area features a large heading "DeepChem Server" and a sub-section "A minimal cloud infrastructure for [DeepChem](#)". Below this, there is a "Table of Contents" with the following items:

- 1. [Key Features](#)
- 2. [Requirements](#)
- 3. [Installation](#)
 - [Docker \(recommended\)](#)
 - [From Source](#)
- 4. [Quick Start](#)
- 5. [Project Structure](#)
- 6. [Contributing](#)
- 7. [License](#)



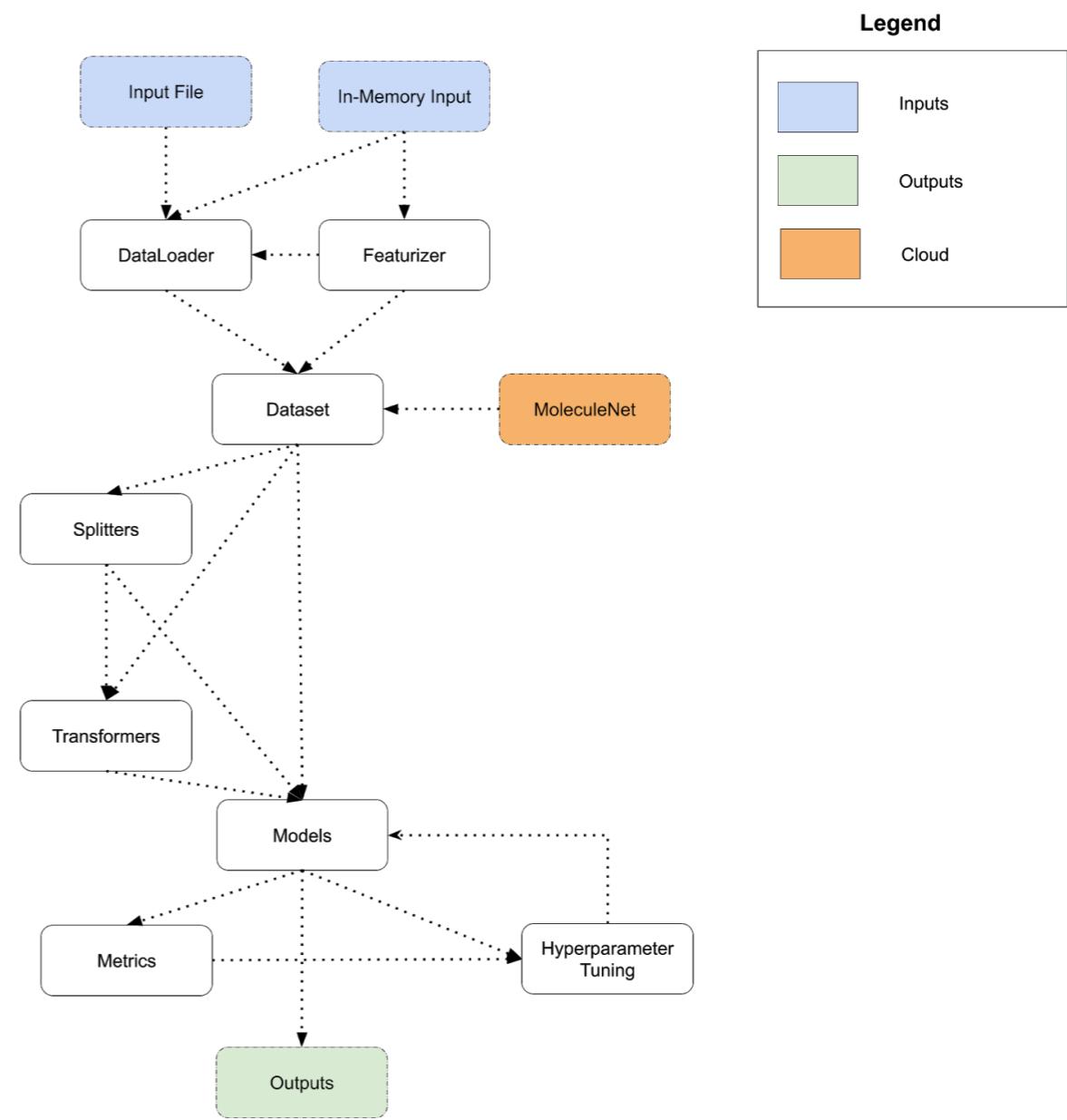
The screenshot shows the GitHub repository page for `github.com/deepforestsci/deepchem-del`. The page has a dark theme. At the top, there are navigation icons and the repository URL. Below the header, there are two buttons: "README" and "MIT license", with "README" being underlined. The main content area features a large heading "Deepchem-DEL" and a description: "Deepchem-DEL is an open-source platform for reproducible and scalable machine learning on DNA-encoded libraries (DELs). It provides a configurable denoising pipeline and modular DeepChem workflows for hit prediction, enrichment analysis, and benchmarking." Below this, there is a section: "Deepchem-DEL is built on top of DeepChem-Server, a minimal cloud infrastructure for DeepChem. This foundation allows Deepchem-DEL to run scalable ML workflows in the cloud, manage experiments efficiently, and provide reproducible results with minimal setup. By leveraging DeepChem-Server, users can focus on DEL modeling and benchmarking without worrying about the underlying computational infrastructure." At the bottom, there is a "Table of Contents" with the following items:

- [Installation](#)
- [Project structure](#)
- [Datasets](#)
- [Denoising and Task Setup](#)
- [Quick Start](#)
- [Held-out analysis](#)

DEEPCHEM

SCIENTIFIC MACHINE LEARNING WITH DEEPCHEM

- ▶ DeepChem is a framework to apply AI to drug discovery and other scientific problems.
- ▶ DeepChem offers composable re-usable pipelines for scientific workflows
- ▶ DeepChem increasingly supports non-molecular applications for general scientific computing.



DEEPCHEM IS BROADLY USED

Skoltech
Skolkovo Institute of Science and Technology

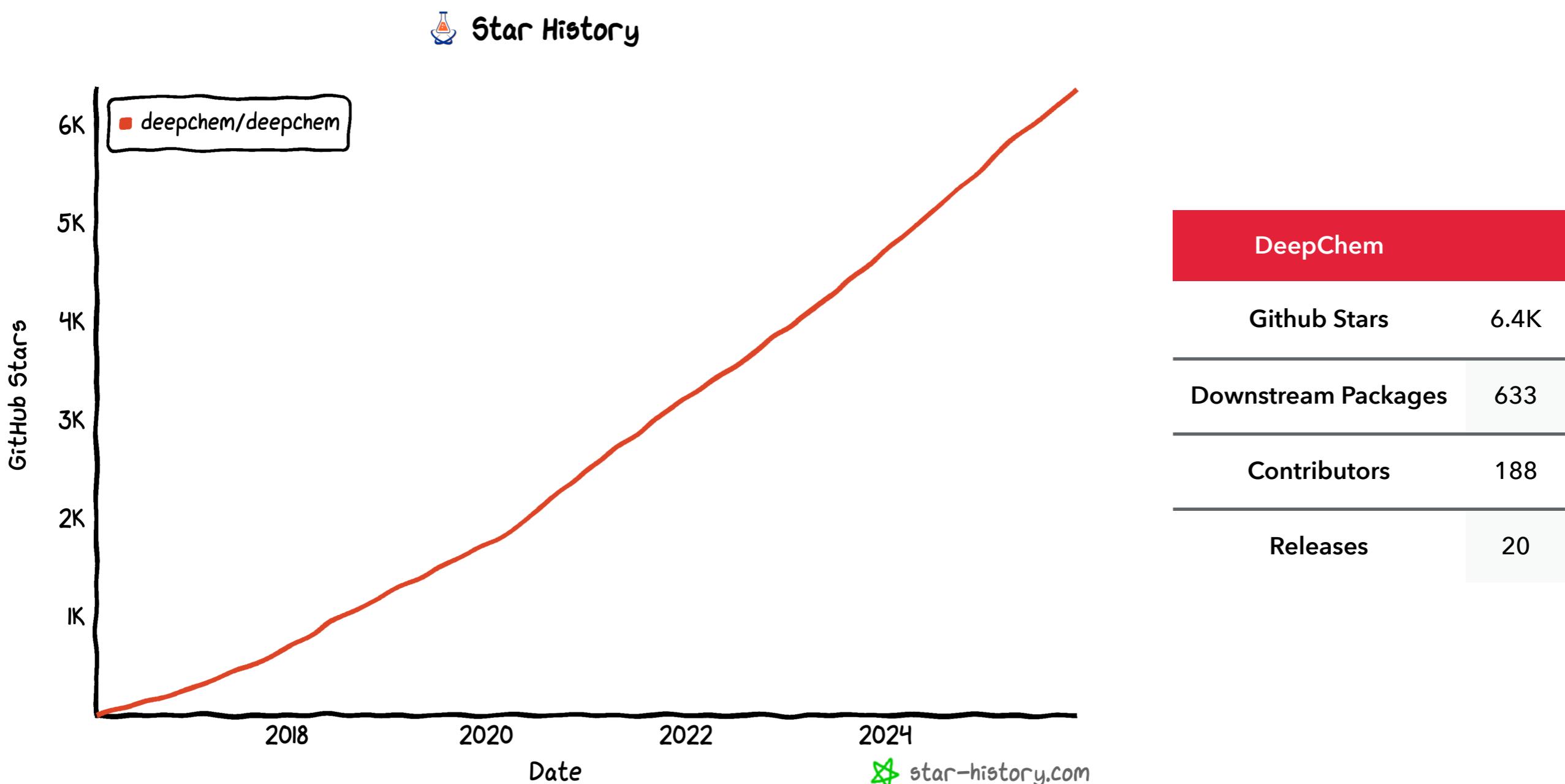
WISCONSIN
UNIVERSITY OF WISCONSIN-MADISON

novo nordisk
®

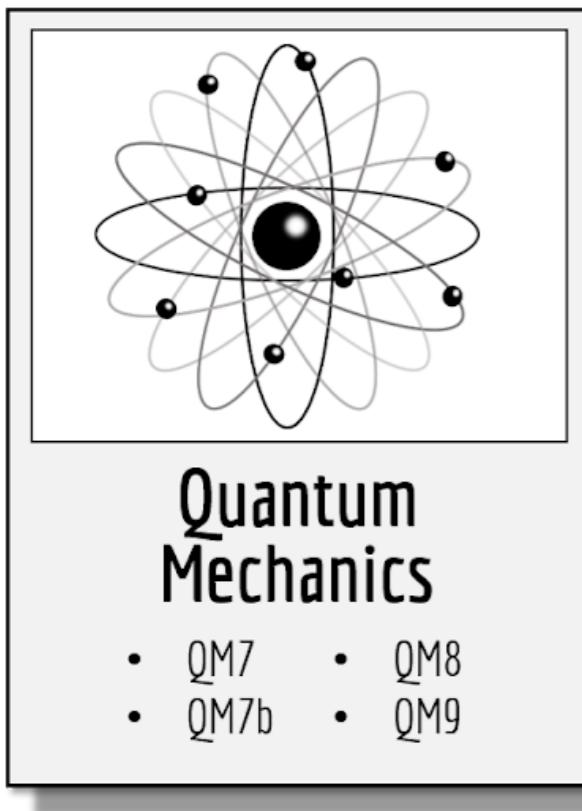
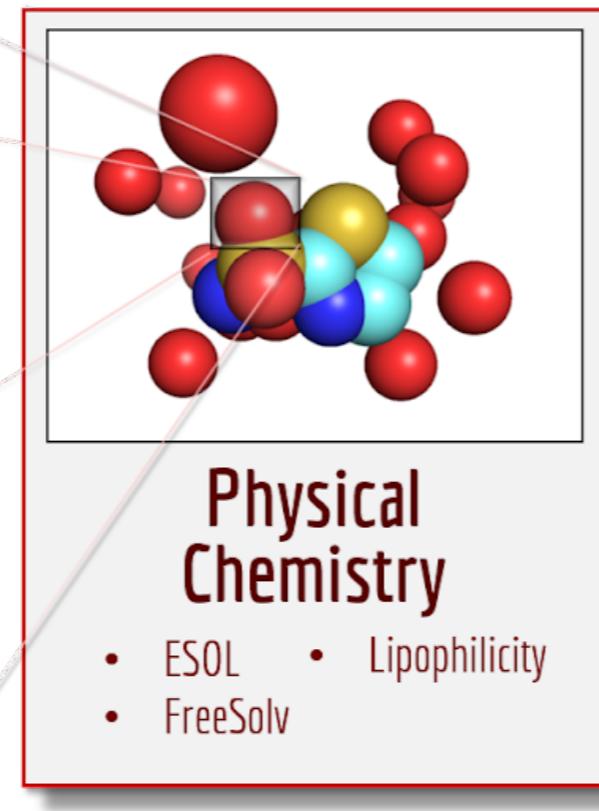
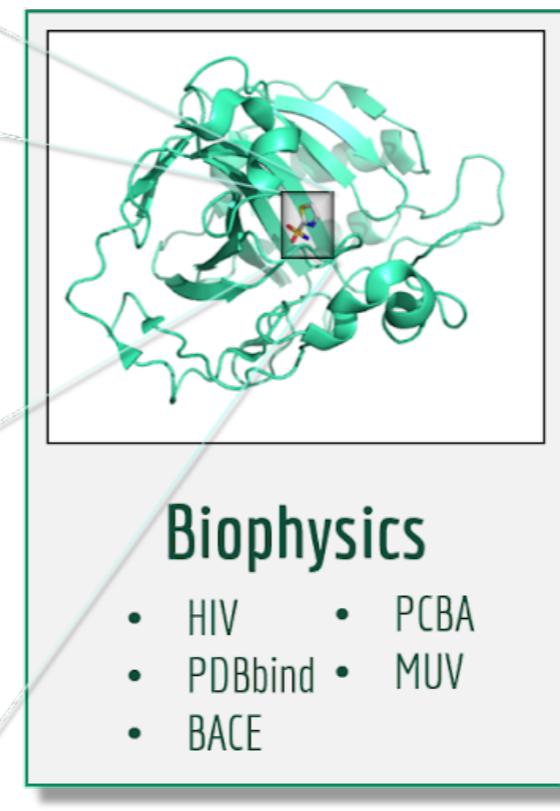
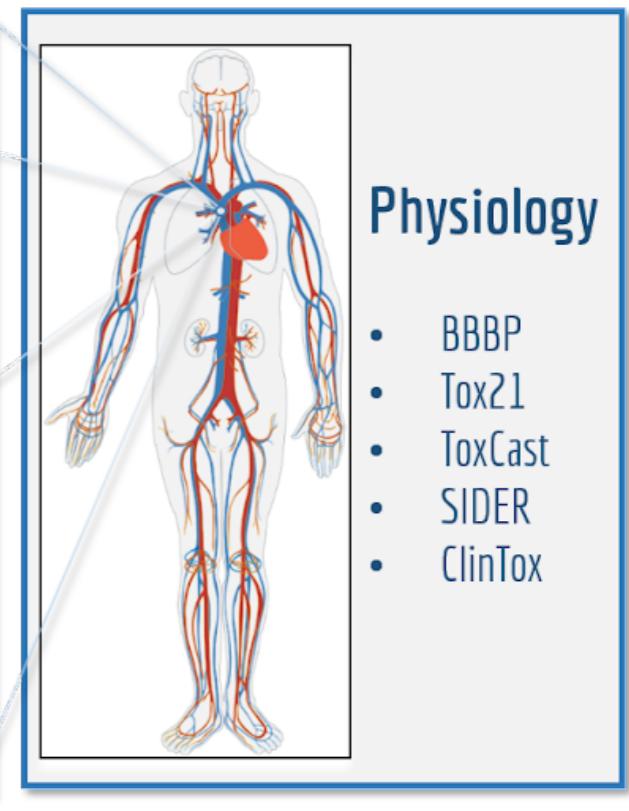
SRI International **BROAD**
INSTITUTE

Weights & Biases **UNIVERSITÉ**
DE GENÈVE **SCHRÖDINGER.**

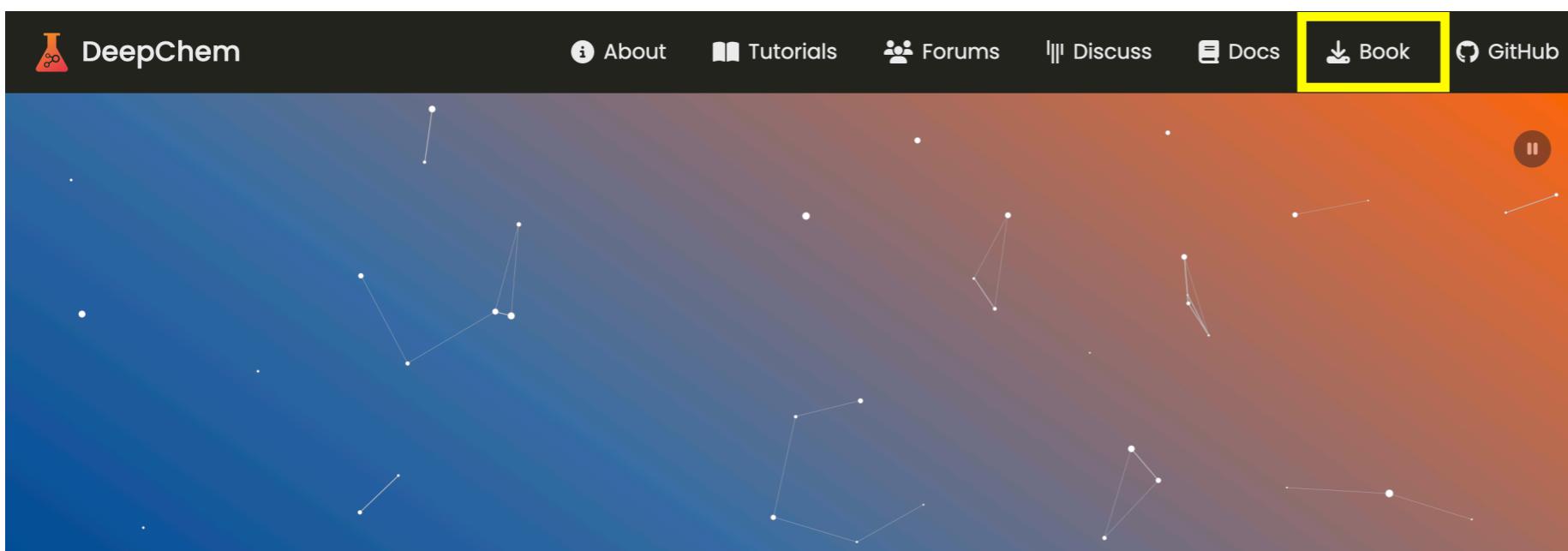
DEEPCHEM HAS AN ACTIVE OPEN SOURCE ECOSYSTEM



MOLECULENET PROVIDES INTEGRATED DATASETS AND BENCHMARKS



JOIN THE COMMUNITY!

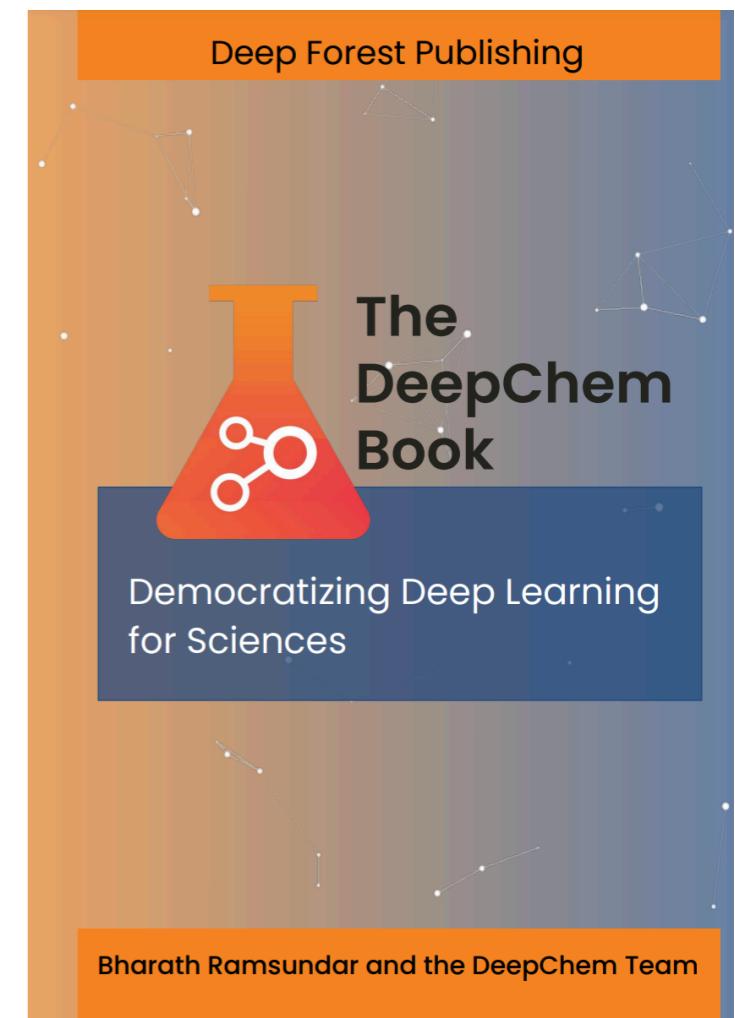


Democratising Deep Learning for
Material Science

DeepChem

"Chemistry itself knows altogether too well that - given the real fear that the scarcity of global resources and energy might threaten the unity of mankind - chemistry is in a position to make a contribution towards securing a true peace on earth."

~ Kenichi Fukui



Join the Discord!

DEEPCHEM-DEL

DEEPRETRO

Our thanks to collaborators at Lawrence Livermore National Laboratory

CONTACT US

bharath@deepforestsci.com

 @rbhar90

CHEMBERTA-3

