Domain-Specialised Mixture of Experts
for Better Language Modelling

Atharva Bhutani| 16 yo | Self-taught Al Dev
ML Collective Research Jam #27/

[ntroduction

Hi everyone N¥¥! I’'m Atharva, a 16 year old high school student learning deep learning by
building things from scratch. | don't have formal training, just curiosity and a lot of trial and
error. Right now I'm building a transformer-based LLM in NumPy and expanding it into a

domain-specialized Mixture of Experts.

Motivation

Current LLMs are massive and generalized, but real world needs are often domain-specific.

Can we scale intelligently instead of brutally?
MokEs are promising, but most implementations are compute hungry.

My goal: a light, explainable, domain-specialized MoE, built from scratch.

References

- Shazeer et al. (2017). Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.

- Fedus et al. (2022). Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity.

Foundations - LLM from Scratch

* Tokenization > Embedding - LayerNorm - Multi-Head Attention 2> MLP - Output
- Built everything in NumPy with custom initialization (He/Xavier), manual forward passes.

- Learned core ideas by implementation—not by lecture.

Takeaways

- Debugging teaches more than reading.

- Data shapes, matrix flow, and attention mechanisms become intuitive.

References

- Vaswani et al. (2017). Attention is All You Need.

- Karpathy's minGPT for interpretability inspiration.

Transition to MoE

- After a working transformer, | wanted modularity.
+ Instead of larger models, what if we selectively activate parts of the network?
 MoEs do this by routing tokens to “experts” based on input.

- My twist: domain tags help route inputs, not just token patterns.

Domain Specialisation

* Instead of training on a generic corpus, | segment data by domain: science, law, tech, etc.
* Each domain hasits own expert MLP.

- Routing is done via a lightweight classifier that predicts the domain.

Why this matters:

* Makes routing interpretable.
- Each expert learns something meaningful and domain-specific.

- Reduces unnecessary computation.

Architecture Overview

* Embedding 2 Shared Attention Stack 2> Domain Classifier > Route to Domain Expert MLP -
Output Head

Experts are only activated when their domain is predicted.

Optimizes for both memory and performance.

Sparsity: ~10% of experts active per token

Scalability: Add more experts, keep compute constant.

Challenges

 Routing accuracy: Wrong domain predictions can lead to poor generations.
- Balancing domain distribution in training.

 Getting enough tokens per domain to avoid underfitting.

Extras: Visualize attention and classifier confidence.

What's Next?

- Add diffusion-based pretraining for smoother text representations.
- Train on real-world domain data (Reddit science, Stack Overflow, arXiv abstracts).

* Try collaborative training.

Key Papers:

- Vaswanietal. (2017) - Transformers
- Shazeer et al. (2017) - Sparsely-Gated MoEs
- Fedusetal. (2022) - Switch Transformer

- Ramesh et al. (2022) - Hierarchical Mixture of Experts (for inspiration)

Thank You for listening!

Twitter: @gradanis GitHub: @gradanii Mail: gradanis@proton.me
atharvaxcode@proton.me

