
The Geometry of Self-Verification
in a Task-Specific Reasoning Model

Andrew Lee, Lihao Sun, Chris Wendler, Fernanda Viegas, Martin Wattenberg



Reasoning via CoT is amazing!

2

Natalia sold 48 clips in April, 
and half as many clips in 
May. How many clips did 
Natalia sell?

Let’s think step by step.
…
In May, Natalie sold 48 / 2 = 24
So in total, we have 48 + 24
…
So, Natalie sold 72 clips.



But are CoTs “faithful”?

3

Faithful?
Do these CoT tokens reflect the model’s inner computations? 

No! [1, 2, 3, 4]

[1] Lanham et al. “Measuring Faithfulness in Chain-of-Thought Reasoning”. (2024).
[2] Arcuschin et al. “Chain-of-Thought Reasoning In The Wild Is Not Always Faithful. (2025).
[3] Chen et al. Reasoning Models Don’t Always Say What They Think. 2025
[4] Barez et al. Chain-of-Thought is Not Explainability. 2025

Natalia sold 48 clips in April, 
and half as many clips in 
May. How many clips did 
Natalia sell?

Let’s think step by step.
…
In May, Natalie sold 48 / 2 = 24
So in total, we have 48 + 24
…
So, Natalie sold 72 clips.



Can we monitor & interpret latent state instead?

● Let’s focus on a specific reasoning behavior: Self-verification!
● RQ: How do LMs verify their own answers?
● Let’s train a model on a reasoning task, and study it!

4



CountDown

● Let’s train a model on a specific reasoning task that requires
○ Search
○ Self-verification

● Task: CountDown

5

Using operands [20, 14, and 40], create an equation that equals 28.

Solution:
40 / 14 * 20 



Training on CountDown

● Train Qwen2.5-3B with DeepSeek R1’s recipe
○ Reward when model finds correct solution
○ Reward for correct format (use of <think>, <answer> tags)

6

Using operands [20, 14, and 40], create an equation that equals 28.

“<think> Let’s try different attempts…. (20 - 14 + 40) = 6 + 40 = 26. But this 
does not equal 28, so we need to try another combination. Let’s try…

…
Let’s try 40 * 14 / 20 = 560 / 20 = 28. So the answer is 40 * 14 / 20 </think>

<answer> 40 * 14 / 20 </answer>



Benefit of Setup: Mode Collapse!

● Preference tuning (RL) leads to mode collapse [1, 2, 3, 4]:
○ Model over-weighs majority preferences
○ Sacrifices diversity
○ (which is why all LMs sound the same?)

● We can leverage this as a feature, not a bug!

7
[1] Kirk et al. “Understanding the Effects of RLHF on LLM Generalisation and Diversity”. 2023 
[2] Murthy et al. “One fish, two fish, but not the whole sea: Alignment reduces language models’ conceptual diversity.” 2024.
[3] Padmakumar et al. “Does Writing with Language Models Reduce Content Diversity?”. 2023.
[4] Slocum et al. “Diverse preference learning for capabilities and alignment”. 2025.



Mode Collapse

8

Using operands [20, 14, and 40], create an equation that equals 28.

“<think> Let’s try different attempts…. (20 - 14 + 40) = 6 + 40 = 26. But this 
does not equal 28, so we need to try another combination. I could try adding 

20 to 14 and 40, which gives me 74, so that’s not it either…
…

Let’s try 40 * 14 / 20 = 560 / 20 = 28. So the answer is 40 * 14 / 20 </think>
<answer> 40 * 14 / 20 </answer>

<think>
40 - 14 - 20 = 10 - 20 = -10 (not 28)
40 - 14 + 20 = 26 + 20 = 46 (not 28)
40 + 14 - 20 = 54 - 20 = 34 (not 28)
40 + 14 + 20 = 54 + 20 = 74 (not 28)

40 * 14 / 20 = 560 / 20 = 28 (this works)
So, the equation that equals 28 is 40 * 14 / 20.

</think>
<answer>(40 * 14) / 20 </answer>

~20 gradient steps

~300 gradient steps

Mode collapse!
Model always generates

highly structured CoT

Makes it easier to parse + study!



Mode Collapse

9

Using operands [20, 14, and 40], create an equation that equals 28.

“<think> Let’s try different attempts…. (20 - 14 + 40) = 6 + 40 = 26. But this 
does not equal 28, so we need to try another combination. I could try adding 

20 to 14 and 40, which gives me 74, so that’s not it either…
…

Let’s try 40 * 14 / 20 = 560 / 20 = 28. So the answer is 40 * 14 / 20 </think>
<answer> 40 * 14 / 20 </answer>

<think>
40 - 14 - 20 = 10 - 20 = -10 (not 28)
40 - 14 + 20 = 26 + 20 = 46 (not 28)
40 + 14 - 20 = 54 - 20 = 34 (not 28)
40 + 14 + 20 = 54 + 20 = 74 (not 28)

40 * 14 / 20 = 560 / 20 = 28 (this works)
So, the equation that equals 28 is 40 * 14 / 20.

</think>
<answer>(40 * 14) / 20 </answer>

~20 gradient steps

~300 gradient steps

What happens at these timesteps?



How does the model verify its solutions?

● “Top-down” analysis
● “Bottom-up” analysis
● Analyses meeting in the middle

10

Embed

Unembed

Layer 0

Layer N

Layer L-1



Revisiting Transformers

11

Transformer Block Layer 0

Transformer Block Layer L-1

Unembed

Logits

Layer N

Attention

MLP

Embed



Revisiting Transformers

12

Transformer Block Layer 0

Transformer Block Layer L-1

Unembed

Logits

Layer N

Attention

MLP

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N

WK

WV

Embed



● Rather than thinking of MLP as…

MLPs

13

𝛔 𝛔 𝛔 𝛔

MLP Layer N

WK

WV

𝛔𝛔



MLPs

14

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N
Σ

● Break it down by rows, columns!



● Break it down by rows, columns!

MLPs

15

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N
Σ

Key 
vectors 

i’th row of WK



MLPs

16

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N
Σ

● Break it down by rows, columns!

i’th column of WV
Value 

vectors 



● Break it down by rows, columns!

MLPs

17

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N
Σ

Key 
vectors 

Scalar



● Break it down by rows, columns!

MLPs

18

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N
Σ

Scalar



MLPs

19

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N
Σ

● Break it down by rows, columns!

Scale a value vector
Value 

vectors 



MLPs

20

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N
Σ

● Break it down by rows, columns!



MLPs

21

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N
Σ

● Break it down by rows, columns!



MLPs

22

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N
Σ

● Break it down by rows, columns!



Gated Linear Units (GLUs)

23

𝛔 𝛔 𝛔 𝛔 𝛔

MLP
Σ

𝛔

GLU
Σ

x

𝛔
x

𝛔
x



How does R1 self-verify?

24

Using operands [20, 14, and 40], create an equation that equals 28.

<think>
40 - 14 - 20 = 10 - 20 = -10 (not 28)
40 - 14 + 20 = 26 + 20 = 46 (not 28)
40 + 14 - 20 = 54 - 20 = 34 (not 28)
40 + 14 + 20 = 54 + 20 = 74 (not 28)

40 * 14 / 20 = 560 / 20 = 28 (this works)
So, the equation that equals 28 is 40 * 14 / 20.

</think>
<answer>(40 * 14) / 20 </answer>

What happens at these timesteps? Embed

Unembed

Logits

Layer 0

Layer N

Layer L-1



Top-Down: Probing for Correctness

● Take activations whenever an attempt is made
● Train linear probe to classify correct vs. incorrect

25

<think>
40 - 14 - 20 = 10 - 20 = -10 (not 28)
40 - 14 + 20 = 26 + 20 = 46 (not 28)
40 + 14 - 20 = 54 - 20 = 34 (not 28)
40 + 14 + 20 = 54 + 20 = 74 (not 28)

40 * 14 / 20 = 560 / 20 = 28 (this works)
So, the equation that equals 28 is 40 * 14 / 20.

</think>
<answer>(40 * 14) / 20 </answer>

Embed

Unembed

Logits

Layer 0

Layer N

Layer L-1

Valid

Invalid
W ∈ 
R2xd

WValid: W[0]
WInvalid : 

W[1]



Steering with Probe

● Near perfect probing accuracy
○ Linear separability between xValid, xInvalid

● We can use probe (WValid) to steer model

26

(target: 46)
<think>

87 - 38 - 3 = 116 - 3 = 113 (not 46)
87 - 38 + 3 = 49 + 3 = 52 (not 46)
87 - 38 + 3 = 49 + 3 = 52 (not 46)

87 + 38 - 3 = 125 - 3 = 122 (not 46)
38 + 38 - 3 = 76 - 3 = 73 (not 46)...

Original CoT
(target: 46)

<think>
87 - 38 - 3 = 116 - 3 = 113 (not 46)
87 - 38 + 3 = 49 + 3 = 52 (not 46)

87 - 38 + 3 = 49 + 3 = 52! Yes, we got it!
87 - 38 + 3 = 49 + 3 = 52.

</think>
<answer> 87 - 38 + 3 </answer>

Steered CoT



● GLUValid, GLUInvalid: value vectors with highest cosine similarity as WValid, WInvalid
a) Vectors that contribute towards the WValid, Invalid direction

Finding Verification Related GLU weights

27

𝛔

GLU
Σ

x

𝛔
x

𝛔
x



Finding Verification Related GLU weights

28

Vector Nearest Neighbors

WValid
WInvalid

Exactly, >(, =yes, =YES, =:, ===, quis, esac, ####
不完 (unfinished), 不了 (unable), 不 (not), 不在 (absent), 不该 (should not)



Finding Verification Related GLU weights

29

Vector Nearest Neighbors

WValid
WInvalid

Exactly, >(, =yes, =YES, =:, ===, quis, esac, ####
不完 (unfinished), 不了 (unable), 不 (not), 不在 (absent), 不该 (should not)

GLUValid
(29, 6676)

(27, 10388)
(30, 8233)

yes, Yes, Bindable, exactly, Yes, "Yes, yes, Yep, Exactly, included
mirac, 乐观 (optimism), 安然 (safely), Relief, 幸 (fortunate), .isSuccess
correctly, 正确 (correct), 恰当 (appropriate), accurately, 符合 (conform)



Finding Verification Related GLU weights

30

Vector Nearest Neighbors

WValid
WInvalid

Exactly, >(, =yes, =YES, =:, ===, quis, esac, ####
不完 (unfinished), 不了 (unable), 不 (not), 不在 (absent), 不该 (should not)

GLUValid
(29, 6676)

(27, 10388)
(30, 8233)

yes, Yes, Bindable, exactly, Yes, "Yes, yes, Yep, Exactly, included
mirac, 乐观 (optimism), 安然 (safely), Relief, 幸 (fortunate), .isSuccess
correctly, 正确 (correct), 恰当 (appropriate), accurately, 符合 (conform)

GLUInvalid

(26, 744)
(26, 6619)
(27, 9766)
(27, 4971)

未能 (failed), 不够 (not enough), nicht (not), 不像 (not like), 达不到 (can’t reach)
缺乏 (lack), 缺少 (lack), 不方便 (inconvenient), lacks, 难以 (difficult), 未能 (failed)
是不可能 (impossible), neither, 看不到 (can’t see), 不存在 (doesn’t exist)
inefficient, 没能 (failed), 不方便 (inconvenient), Danger, disadvantage, 不利于



What Role do GLUValid Play?

31

● Given 300 CountDown tasks, intervene by disabling GLUValid weights

(Target: 28)
<think>

40 - 14 - 20 = 10 - 20 = -10 (not 28)
40 - 14 + 20 = 26 + 20 = 46 (not 28)
40 + 14 - 20 = 54 - 20 = 34 (not 28)
40 + 14 + 20 = 54 + 20 = 74 (not 28)

40 * 14 / 20 = 560 / 20 = 28

… (this works)
So, the equation that equals 28 is 40 * 14 

/ 20.
</think>

<answer>(40 * 14) / 20 </answer>

… (not 28)
40 * 14 * 20 = 560 * 20 = 11200 (not 28)
40 / 14 * 20 = 2.857 * 20 = 57.14 (not 28)

…

… (not 28)
Wait, 40 * 14 / 20 = 28. Wait, so the 

solution is 40 * 14 / 20.
</think>

<answer>(40 * 14) / 20 </answer>

Orig. continuation
(Failed 
intervention)

Successful
Intervention

Partial
Success



Interventions with GLUs

32



Interventions with GLUs

33



Finding Verification Related GLU weights

34

Vector Nearest Neighbors

WValid
WInvalid

Exactly, >(, =yes, =YES, =:, ===, quis, esac, ####
不完 (unfinished), 不了 (unable), 不 (not), 不在 (absent), 不该 (should not)

GLUValid
(29, 6676)

(27, 10388)
(30, 8233)

yes, Yes, Bindable, exactly, Yes, "Yes, yes, Yep, Exactly, included
mirac, 乐观 (optimism), 安然 (safely), Relief, 幸 (fortunate), .isSuccess
correctly, 正确 (correct), 恰当 (appropriate), accurately, 符合 (conform)

-1 * GLUValid

-1 * (29, 6676)
-1 * (27, 10388)
-1 * (30, 8233)

都不 (neither), 不太 (not quite), neither, 不予 (not given), 没见过 (never seen)
失败 (failure), failure, 不良 (bad), 不利 (unfavorable), 糟糕 (bad), 失误 
(mistake)
wrong, 不良 (bad), incorrect, wrong, invalid, bad, inappropriate, invalid



Finding Verification Related GLU weights

35

Vector Nearest Neighbors

WValid
WInvalid

Exactly, >(, =yes, =YES, =:, ===, quis, esac, ####
不完 (unfinished), 不了 (unable), 不 (not), 不在 (absent), 不该 (should not)

GLUInvalid

(26, 744)
(26, 6619)
(27, 9766)
(27, 4971)

未能 (failed), 不够 (not enough), nicht (not), 不像 (not like), 达不到 (can’t 
reach)
缺乏 (lack), 缺少 (lack), 不方便 (inconvenient), lacks, 难以 (difficult), 未能 
(failed)
是不可能 (impossible), neither, 看不到 (can’t see), 不存在 (doesn’t exist)
inefficient, 没能 (failed), 不方便 (inconvenient), Danger, disadvantage, 不利于

-1 * 
GLUInvalid

-1 * (26, 744)
-1 * (26, 6619)
-1 * (27, 9766)
-1 * (27, 4971)

慎 (careful), 足 (sufficient), 同等 (equal), tend, ONDON, 足以 (enough)
不仅能 (not only can), 不错的 (good), 具有良好 (have good), 总算 (finally)
might, maybe, may, 有时候 (sometimes), 部分地区 (some areas), .some
successfully, successful, 顺利 (smooth), 成功 (successful)



Interventions with GLUs

36

What about the other ~50%?



How does the model verify its solutions?

● “Top-down” analysis
● “Bottom-up” analysis
● Analyses meeting in the middle

37

Embed

Unembed

Layer 0

Layer N

Layer L-1



Bottom-Up: Attention Heads

● CountDown already specifies target (solution) in context

38

Using operands [20, 14, and 40], create an equation that equals 28.



Bottom-Up: Attention Heads

● CountDown already specifies target (solution) in context

● Given CoT, plausible that attention heads check against the target solution

39

Using operands [20, 14, and 40], create an equation that equals 28.

Using operands [20, 14, and 40], create an equation that equals 28. <think> 40 / 14 * 20 = 28

(not 28)

(this works)



Bottom-Up: Attention Heads

● CountDown already specifies target (solution) in context

● Given CoT, plausible that attention heads check against the target solution

40

Using operands [20, 14, and 40], create an equation that equals 28.

Using operands [20, 14, and 40], create an equation that equals 28. <think> 40 / 14 * 20 = 28

(not 28)

(this works)

Attention Head



Bottom-Up: Attention Heads

● CountDown already specifies target (solution) in context

● Given CoT, plausible that attention heads check against the target solution

41

Using operands [20, 14, and 40], create an equation that equals 28.

Using operands [20, 14, and 40], create an equation that equals 28. <think> 40 / 14 * 20 = 28

(not 28)

(this works)

Attention Head Previous-Token Heads:
Spend >10% of attention on 
solution token



Bottom-Up: Attention Heads

● Identify 33 previous-token heads (notated APrev)
○ Out of 576 (5.7%) attention heads

42



Intervention Results

43



Interventions with APrev

44



Interventions with APrev

45

(Target: 28)
<think>

40 - 14 - 20 = 10 - 20 = -10 (not 28)
40 - 14 + 20 = 26 + 20 = 46 (not 28)

…
40 * 14 / 20 = 560 / 20 = 28 (not 28)

40 * 14 * 20 = 560 * 20 = 11200 (not 28)
40 / 14 * 20 = 2.857 * 20 = 57.14 (not 28)

…



GLUValid vs. APrev?

● Wait, are GLUValid weights and APrev related?
● We believe they share the same “verification subspace”!
● In fact, APrev seems to activate GLUValid weights:

○ APrev “writes” to a “verification” subspace
○ GLUValid

 “reads” from the “verification” subspace

46



GLUValid vs. APrev?

47
Embed

Unembed

Layer i

Layer j

Previous-Token 
Attention Heads

GLUValid



Where do GLUs “read” from?

48

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N
Σ

● Each key vector has an activation region:
○ Subspace that triggers a corresponding value vector



● Each key vector has an activation region:
○ Subspace that triggers a corresponding value vector

MLPs: Activation Regions

49

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N
Σ



● Each key vector has an activation region:
○ Subspace that triggers a corresponding value vector

MLPs: Activation Regions

50

𝛔 𝛔 𝛔 𝛔 𝛔

MLP Layer N
Σ



Gated Linear Units (GLUs)

𝛔 𝛔 𝛔 𝛔 𝛔

MLP
Σ

𝛔

GLU
Σ

x

𝛔
x

𝛔
x



We have a set of GLU weights (GLUValid)

Verification Subspace

𝛔

GLU
Σ

x

𝛔
x

𝛔
x

Verification Subspace (Polytope):
Intersection of the “activation regions” of all GLUValid weights!

Of the 33 previous-token heads,
which attention heads write into this subspace?



Attention (OV, QK Circuits)

53my

Embed

x

Hello

Embed

x

VVV
WV WV WV

Σ

Σ𝛼iVi

name

x

Embed

output

WO

𝛼i 𝛼i
𝛼i

𝛼 = softmax(xTWQWKx / √d)

attention(x) = Σ𝛼i WOWvx
WOWV: What to write
WQWK: What to read

4 Weights: WQ, WK, WV, WO 



Inter-Layer Communication Channels

● How much does each attention head “write” into the subspace that GLUValid 
reads from?

● Which attention heads align the most with the “verification subspace”?
● How strongly does each head activate GLUValid?

54



Inter-Layer Communication Channels

55

Rd Rd x 

d



Localizing Self-Verification

● Rank the 33 previous-token heads (APrev) by our “alignment score”
● Incrementally ablate one head at a time
● Turning off 6 attention heads (AVerif) can disable self-verification!

56



Interventions with AVerif

57



Disabling AVerif disables GLUValid

58

● AVerif takes hidden-state into “verification subspace”
● Verification subspace triggers GLUValid weights
● GLUValid weights promotes token such as “success”, “complete”, etc.



Ok, but this is a specific fine-tuned model

● Does this pertain only to our fine-tuned model?
● We check:

○ Base model (Qwen2.5 3B)
○ Deepseek-R1 Distill-Qwen 14B

59



What about Base Model?

● Does same verification subspace exist in the base model (Qwen2.5-3B)?
● But base model isn’t trained to do CountDown. 
● We can give CountDown as a in-context learning (ICL) task, with same CoT 

as demonstrations!

60

Using operands [20, 14, and 40], create an equation that equals 28.
<think> 40 - 14 - 20 = 10 - 20 = -10 (not 28)

40 - 14 + 20 = 26 + 20 = 46 (not 28)
40 + 14 - 20 = 54 - 20 = 34 (not 28)
40 + 14 + 20 = 54 + 20 = 74 (not 28)

40 * 14 / 20 = 560 / 20 = 28 (this works) </think>
<answer> (40 * 14) / 20 </answer>

Using operands [11, 5, and 68], create an equation that equals 62.
…

Using operands [14, 15, and 3], create an equation that equals 26.



What about Base Model?

● Base model can also solve CountDown!
● Corroborates claims that RL only enhances existing capabilities [1, 2]

61

Using operands [20, 14, and 40], create an equation that equals 28.
…

<answer> (40 * 14) / 20 </answer>
Using operands [11, 5, and 68], create an equation that equals 62.

…
<answer> 68 - 11 + 5 </answer>

Using operands [14, 15, and 3], create an equation that equals 26.
<think> 14 + 15 + 3 = 32 (not 26)

14 - 15 + 3 = 2 (not 26)
14 - 15 - 3 = -4 (not 26)

…
14 + 15 - 3= 26 (this works) </think>

<answer> 14 + 15 - 3 </answer>

[1] Gandhi et al. “Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective stars.” 2025
[2] Yue et al. “Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?” 2025



What about Base Model?

62



What about general reasoning model? DeepSeek R1-14B

● We can repeat our experiment for a general reasoning model
● We find similar components!

63

(Target: 26)
<think> …

14 + 15 - 3= 26 (not 26)
Wait! 14 + 15 - 3 is 26.

Wait, so 14 + 15 - 3 is correct!
</think>

<answer> 14 + 15 - 3 </answer>



Takeaway

● By reverse-engineering a simplified setting (CountDown), we identify a 
subspace relevant for self-verification

● Gives us hope that we can monitor model’s latent space during its CoT!

64



Thank you!

Chris Wendler
Northeastern University

Lihao Sun
University of Chicago

Fernanda Viegas
Harvard, DeepMind

Martin Wattenberg
Harvard, DeepMind


